This documentation is not for the latest stable Salvus version.
Mapping
class in SalvusOpt. This gives a lot of flexibility, for instance, to use different discretizations (e.g., a coarser mesh for the inversion or an event-dependent mesh for the simulation) or model parameterizations (e.g., inverting only for a subset of the physical parameters).%matplotlib inline
%config Completer.use_jedi = False
import os
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
import matplotlib.pyplot as plt
import numpy as np
import pathlib
import time
import xarray as xr
import salvus.namespace as sn
nx, ny = 10, 10
x = np.linspace(0.0, 3000.0, nx)
y = np.linspace(-1000.0, 0.0, nx)
xx, yy = np.meshgrid(x, y, indexing="ij")
vp = 1500.0 - yy
rho = 1000.0 - yy
ds = xr.Dataset(
data_vars={
"vp": (["x", "y"], vp),
"rho": (["x", "y"], rho),
},
coords={"x": x, "y": y},
)
ds.vp.T.plot()
<matplotlib.collections.QuadMesh at 0x7fc138734110>
p = sn.Project.from_volume_model(
path="project",
volume_model=sn.model.volume.cartesian.GenericModel(name="model", data=ds),
load_if_exists=True,
)
src = sn.simple_config.source.cartesian.ScalarPoint2D(x=500.0, y=-500.0, f=1.0)
rec = sn.simple_config.receiver.cartesian.collections.ArrayPoint2D(
x=np.linspace(100.0, 2900.0, 10), y=0.0, fields=["phi"]
)
p += sn.Event(event_name="event", sources=src, receivers=rec)
p.viz.nb.domain()
ec = sn.EventConfiguration(
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=2.0
),
wavelet=sn.simple_config.stf.Ricker(center_frequency=5.0),
)
p += sn.SimulationConfiguration(
name="sim_model",
elements_per_wavelength=2,
tensor_order=4,
max_frequency_in_hertz=10.0,
model_configuration=sn.ModelConfiguration(
background_model=None, volume_models="model"
),
event_configuration=ec,
absorbing_boundaries=sn.AbsorbingBoundaryParameters(
reference_velocity=2000.0,
number_of_wavelengths=3.5,
reference_frequency=5.0,
),
)
p += sn.MisfitConfiguration(
name="misfit",
observed_data=None,
misfit_function="L2_energy_no_observed_data",
receiver_field="phi",
)
gradients = {}
while not gradients:
gradients = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=1
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
raw_gradient = sn.UnstructuredMesh.from_h5(gradients["event"])
[2024-03-15 09:29:20,147] INFO: Creating mesh. Hang on. [2024-03-15 09:29:20,589] INFO: Submitting job ... [2024-03-15 09:29:20,763] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:22,907] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2403150929908948_246f7ec1bb@local [2024-03-15 09:29:22,948] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:24,974] INFO: 1 events have already been submitted. They will not be submitted again.
raw_gradient
. In the widget below, we notice that the sensitivity at the source location and - to a smaller degree - at the receiver locations has significantly higher amplitudes than everywhere else in the domain. This is the result of all energy passing through these points, which is why the waveforms are clearly most sensitive to changes at those locations. However, this clearly does not look like a reasonable model update.raw_gradient
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc12b147c10>
VP
, but could do the same for RHO
.def visualize_gradient(grad, clip=None):
g = grad.model.copy()
mask = np.logical_and(
g.get_element_centroid()[:, 1] > -1000.0,
np.abs(g.get_element_centroid()[:, 0] - 1500.0) < 1500.0,
)
g = g.apply_element_mask(mask)
if clip:
scale = (
clip
* np.max(np.abs(g.elemental_fields["VP"]))
* np.ones_like(g.elemental_fields["VP"])
)
g.elemental_fields["VP"] = np.minimum(g.elemental_fields["VP"], scale)
g.elemental_fields["VP"] = np.maximum(g.elemental_fields["VP"], -scale)
display(g)
prior = p.simulations.get_mesh("sim_model")
absolute
scaling of the physical parameters, there is no difference between both discretizations. Hence the mapped gradient is the same as the raw gradient.map1 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
)
grad1 = map1.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
)
visualize_gradient(grad1, clip=None)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc16209c4d0>
VP
in locations different from the source / receivers.visualize_gradient(grad1, clip=0.1)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc1620bb290>
map2 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
)
grad2 = map2.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad2, clip=0.1)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc161dd8850>
map3 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
receiver_cutout_radius_in_meters=100.0,
)
grad3 = map3.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad3, clip=0.1)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc162100250>
visualize_gradient(grad3, clip=0.8)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc161d4c4d0>
mesh = p.simulations.get_mesh(simulation_configuration="sim_model")
roi = np.zeros_like(mesh.connectivity)
mask = mesh.points[mesh.connectivity][:, :, 1] < -100.0
roi[mask] = 1.0
mesh.attach_field("region_of_interest", roi)
map4 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad4 = map4.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad4, clip=0.8)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc161e14c10>
map5 = sn.Mapping(
inversion_parameters=["VP"],
scaling="relative_deviation_from_prior",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad5 = map5.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad5, clip=0.8)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc122881090>
from salvus.opt.models import UnstructuredModel
smoothed_gradient = UnstructuredModel(
name="smoothed_gradient",
model=p.actions.inversion.smooth_model(
model=grad5.model,
smoothing_configuration=sn.ConstantSmoothing(
smoothing_lengths_in_meters={"VP": [100.0, 50.0]}
),
site_name="local",
ranks_per_job=1,
),
fields=["VP"],
)
visualize_gradient(smoothed_gradient, clip=0.8)
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc161daec50>
forward_wavefield_sampling_interval
in WavefieldCompression
is thus an important tuning parameter. Depending on the application and meshing strategy a factor between 5 and 100 is typically achieved.gradients = {}
for i in [1, 5, 10, 20]:
gradient_files = {}
while not gradient_files:
gradient_files = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=i
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
gradients[i] = sn.UnstructuredMesh.from_h5(gradient_files["event"])
[2024-03-15 09:29:31,624] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-03-15 09:29:31,643] INFO: Submitting job ... [2024-03-15 09:29:31,691] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:33,836] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2403150929838191_a0846cf62d@local [2024-03-15 09:29:33,875] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:35,903] INFO: 1 events have already been submitted. They will not be submitted again. [2024-03-15 09:29:38,033] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-03-15 09:29:38,053] INFO: Submitting job ... [2024-03-15 09:29:38,100] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:40,217] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2403150929219247_c01275291d@local [2024-03-15 09:29:40,255] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:42,279] INFO: 1 events have already been submitted. They will not be submitted again. [2024-03-15 09:29:44,411] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-03-15 09:29:44,430] INFO: Submitting job ... [2024-03-15 09:29:44,481] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:46,612] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2403150929614099_5770682148@local [2024-03-15 09:29:46,655] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-03-15 09:29:48,686] INFO: 1 events have already been submitted. They will not be submitted again.
for i in [1, 5, 10, 20]:
grad = map5.adjoint(
mesh=gradients[i].copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
print(f"----------------------------------------------------------")
print(f"Mapped gradient with sampling interval {i}:")
visualize_gradient(grad, clip=0.8)
---------------------------------------------------------- Mapped gradient with sampling interval 1:
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc1226c6b90>
---------------------------------------------------------- Mapped gradient with sampling interval 5:
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc12c36dc90>
---------------------------------------------------------- Mapped gradient with sampling interval 10:
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc161e3dc90>
---------------------------------------------------------- Mapped gradient with sampling interval 20:
<salvus.mesh.unstructured_mesh.UnstructuredMesh at 0x7fc1220bc710>