Publications using Salvus

We try to keep track of other people's work involving Salvus. Below you can find an (incomplete) list of publications that use Salvus:

2023

  • Bissig, F., Khan, A., & Giardini, D. (2023). Joint inversion of PP and SS precursor waveforms and Rayleigh wave phase velocities for global mantle transition zone structure. Geophysical Journal International, 233(1), 316–337. https://doi.org/10.1093/gji/ggac451
  • Blom, N., Hardalupas, P.-S., & Rawlinson, N. (2022). Mitigating the effect of errors in source parameters on seismic (waveform) tomography. Geophysical Journal International, 232(2), 810–828. https://doi.org/10.1093/gji/ggac314
  • Elkarmoty, M., Rupfle, J., Helal, K., Sholqamy, M., Fath-Elbab, M., Kollofrath, J., et al. (2023). Localization and shape determination of a hidden corridor in the great pyramid of Giza using non-destructive testing. NDT & E International, 102809. https://doi.org/https://doi.org/10.1016/j.ndteint.2023.102809
  • Li, X., Robertsson, J., & Manen, D.-J. van. (2023). Elastic immersive wave experimentation. Geophysical Journal International, 233(1), 724–739. https://doi.org/10.1093/gji/ggac479
  • Marusiak, A. G., Tharimena, S., Panning, M. P., Vance, S. D., Boehm, C., Stähler, S., & Van Driel, M. (2023). Estimating the 3D structure of the enceladus ice shell from flexural and Crary waves using seismic simulations. Earth and Planetary Science Letters, 603, 117984. https://doi.org/10.1016/j.epsl.2022.117984
  • Peng, H., Dukalski, M., Elison, P., & Vasconcelos, I. (2023). Data-driven suppression of short-period multiples from laterally varying thin-layered overburden structures. Geophysics, V59–V73. https://doi.org/10.1190/geo2022-0241.1
  • Rodriguez Piceda, C., Gao, Y.-J., Cacace, M., Scheck-Wenderoth, M., Bott, J., Strecker, M., & Tilmann, F. (2023). The influence of mantle hydration and flexure on slab seismicity in the southern Central Andes. Communications Earth & Environment, 4(1), e2022JB024231. https://doi.org/https://doi.org/10.1038/s43247-023-00729-1
  • Yust, M. B. S., Cox, B. R., Vantassel, J. P., Hubbard, P. G., Boehm, C., & Krischer, L. (2023). Near-surface 2D imaging via FWI of DAS data: An examination on the impacts of FWI starting model. Geosciences, 13(3). https://doi.org/10.3390/geosciences13030063

2022

  • Atterholt, J., & Ross, Z. E. (2022). Bayesian framework for inversion of second-order stress glut moments: Application to the 2019 ridgecrest sequence mainshock. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023780. https://doi.org/10.1029/2021JB023780
  • Atterholt, J., Zhan, Z., & Yang, Y. (2022). Fault zone imaging with distributed acoustic sensing: Body-to-surface wave scattering. Journal of Geophysical Research: Solid Earth, 127(11), e2022JB025052. https://doi.org/10.1029/2022JB025052
  • Aubry, J.-F., Bates, O., Boehm, C., Butts Pauly, K., Christensen, D., Cueto, C., et al. (2022). Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models. The Journal of the Acoustical Society of America, 152(2), 1003–1019. https://doi.org/10.1121/10.0013426
  • Bissig, F., Khan, A., & Giardini, D. (2022). Evidence for basalt enrichment in the mantle transition zone from inversion of triplicated p- and s-waveforms. Earth and Planetary Science Letters, 580, 117387. https://doi.org/10.1016/j.epsl.2022.117387
  • Blom, N., Hardalupas, P.-S., & Rawlinson, N. (2023). Mitigating the effect of errors in source parameters on seismic (waveform) tomography. Geophysical Journal International, 232(2), 810–828. https://doi.org/10.1093/gji/ggac314
  • Brackenhoff, J., Neut, J. van der, Meles, G., Marty, P., & Boehm, C. (2022). Virtual ultrasound transducers in the human brain. In Medical imaging 2022: Ultrasonic imaging and tomography (Vol. 12038, pp. 169–186). SPIE. https://doi.org/10.1117/12.2611779
  • Brinkman, N., Schmelzbach, C., Sollberger, D., Pierick, J. ten, Edme, P., Haag, T., et al. (2022). In situ regolith seismic velocity measurement at the InSight landing site on Mars. Journal of Geophysical Research: Planets, 127(10), e2022JE007229. https://doi.org/10.1029/2022JE007229
  • Dmitrovskii, A. A., Khan, A., Boehm, C., Bagheri, A., & van Driel, M. (2022). Constraints on the interior structure of phobos from tidal deformation modeling. Icarus, 372, 114714. https://doi.org/10.1016/j.icarus.2021.114714
  • Edme, P., Kiers, T., Paitz, P., & Robertsson, J. O. A. (2022). Distributed fiber-optic sensing for local ground-roll estimation and attenuation (Vol. 2022, pp. 1–5). Presented at the 83rd EAGE annual conference & exhibition, European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.202210148
  • Fichtner, A., Klaasen, S., Thrastarson, S., Çubuk‐Sabuncu, Y., Paitz, P., & Jónsdóttir, K. (2022). Fiber‐optic observation of volcanic tremor through floating ice sheet resonance. The Seismic Record, 2(3), 148–155. https://doi.org/10.1785/0320220010
  • Keil, S., Wassermann, J., & Megies, T. (2022). Estimation of ground motion due to induced seismicity at a geothermal power plant near Munich, Germany, using numerical simulations. Geothermics, 106, 102577. https://doi.org/10.1016/j.geothermics.2022.102577
  • Koedel, U., Stork, A., Thomas, P. J., Zhou, W., David, A., Maurer, H., et al. (2022, November 18). Seismic cross-hole surveying with conventional seismic and distributed acoustic sensing (DAS) at the svelvik test-site. Rochester, NY. https://doi.org/10.2139/ssrn.4274670
  • Korta Martiartu, N., Simutė, S., Jaeger, M., Frauenfelder, T., & Rominger, M. B. (2022). Toward speed-of-sound anisotropy quantification in muscle with pulse-echo ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(8), 2499–2511. https://doi.org/10.1109/TUFFC.2022.3189184
  • Krischer, L., Strobach, E., Boehm, C., Afansasiev M., & Angst, U. (2022). Full-waveform inversion of ultrasonic echo signals to evaluate grouting quality of tendon ducts in post-tensioned concrete structures. E-Journal of Nondestructive Testing, 27(9). https://doi.org/10.58286/27317
  • Kufner, S.-K., Bie, L., Gao, Y.-J., Lindner, M., Waizy, H., Kakar, N., & Reitbrock, A. (2022). The devastating 2022 M6.2 Afghanistan earthquake: Challenges, processes and implications (preprint). In Review. https://doi.org/10.21203/rs.3.rs-2238516/v1
  • Li, X., Robertsson, J., Curtis, A., & Manen, D.-J. van. (2022). Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors. The Journal of the Acoustical Society of America, 152(1), 313–329. https://doi.org/10.1121/10.0012578
  • Limberger, F., R\"umpker, G., Lindenfeld, M., & Deckert, H. (2022). Development of a numerical modelling method to predict the seismic signals generated by wind farms. Scientific Reports, 12(1), 15516. https://doi.org/10.1038/s41598-022-19799-w
  • Ma, J., Bunge, H.-P., Thrastarson, S., Fichtner, A., Herwaarden, D.-P. van, Tian, Y., et al. (2022). Seismic full-waveform inversion of the crust-mantle structure beneath china and adjacent regions. Journal of Geophysical Research: Solid Earth, 127(9), e2022JB024957. https://doi.org/10.1029/2022JB024957
  • Marty, P., Boehm, C., & Fichtner, A. (2022). Elastic full-waveform inversion for transcranial ultrasound computed tomography using optimal transport. In 2022 IEEE international ultrasonics symposium (IUS) (pp. 1–4). https://doi.org/10.1109/IUS54386.2022.9957394
  • Marty, P., Boehm, C., Paverd, C., Rominger, M., & Fichtner, A. (2022). Full-waveform ultrasound modeling of soft tissue-bone interactions using conforming hexahedral meshes. In Medical imaging 2022: Physics of medical imaging (Vol. 12031, pp. 877–891). SPIE. https://doi.org/10.1117/12.2611548
  • Rodgers, A., Krischer, L., Afanasiev, M., Boehm, C., Doody, C., Chiang, A., & Simmons, N. (2022). WUS256: An adjoint waveform tomography model of the crust and upper mantle of the Western United States for improved waveform simulations. Journal of Geophysical Research: Solid Earth, 127(7), e2022JB024549. https://doi.org/10.1029/2022JB024549
  • Rodriguez Piceda, C. (2022). Thermomechanical state of the southern central andes : Implications for active deformation patterns in the transition from flat to steep subduction (PhD thesis). Universität Potsdam. https://doi.org/10.25932/publishup-54927
  • Sager, K., Tsai, V. C., Sheng, Y., Brenguier, F., Boué, P., Mordret, A., & Igel, H. (2022). Modelling p waves in seismic noise correlations: Advancing fault monitoring using train traffic sources. Geophysical Journal International, 228(3), 1556–1567. https://doi.org/10.1093/gji/ggab389
  • Spica, Z. J., Castellanos, J. C., Viens, L., Nishida, K., Akuhara, T., Shinohara, M., & Yamada, T. (2022). Subsurface imaging with ocean-bottom distributed acoustic sensing and water phases reverberations. Geophysical Research Letters, 49(2), e2021GL095287. https://doi.org/10.1029/2021GL095287
  • Thrastarson, S., Herwaarden, D.-P. van, Krischer, L., Boehm, C., Driel, M. van, Afanasiev, M., & Fichtner, A. (2022). Data-adaptive global full-waveform inversion. Geophysical Journal International, 230(2), 1374–1393. https://doi.org/10.1093/gji/ggac122
  • Ulrich, Ines E., Boehm, C., Zunino, A., & Fichtner, A. (2022). Analyzing resolution and model uncertainties for ultrasound computed tomography using hessian information. In Medical imaging 2022: Ultrasonic imaging and tomography (Vol. 12038, pp. 48–60). SPIE. https://doi.org/10.1117/12.2608546
  • Ulrich, Ines Elisa, Boehm, C., Zunino, A., Bösch, C., & Fichtner, A. (2022). Diffuse ultrasound computed tomography. The Journal of the Acoustical Society of America, 151(6), 3654–3668. https://doi.org/10.1121/10.0011540
  • Wassermann, J., Braun, T., Ripepe, M., Bernauer, F., Guattari, F., & Igel, H. (2022). The use of 6DOF measurement in volcano seismology – a first application to stromboli volcano. Journal of Volcanology and Geothermal Research, 424, 107499. https://doi.org/10.1016/j.jvolgeores.2022.107499
  • Wehner, D., Blom, N., Rawlinson, N., Daryono, Boehm, C., Miller, M. S., et al. (2022). SASSY21: A 3-D Seismic Structural Model of the Lithosphere and Underlying Mantle Beneath Southeast Asia From Multi-Scale Adjoint Waveform Tomography. Journal of Geophysical Research: Solid Earth, 127(3), e2021JB022930. https://doi.org/https://doi.org/10.1029/2021JB022930
  • Wehner, D., Rawlinson, N., Greenfield, T., Daryono, Miller, M. S., Supendi, P., et al. (2022). SASSIER22: Full-waveform tomography of the eastern indonesian region that includes topography, bathymetry, and the fluid ocean. Geochemistry, Geophysics, Geosystems, 23(11), e2022GC010563. https://doi.org/10.1029/2022GC010563

2021

  • Boehm, C., Hopp, T., & Ruiter, N. (2021). USCT data challenge 2019. In Proceedings of the international workshop on medical ultrasound tomography (pp. 107–115). KIT Scientific Publishing. https://doi.org/10.5445/IR/1000128317
  • Castellanos, J. C., & Clayton, R. W. (2021). The fine-scale structure of long beach, california, and its impact on ground motion acceleration. Journal of Geophysical Research: Solid Earth, 126(12), e2021JB022462. https://doi.org/10.1029/2021JB022462
  • Driel, M. van, Ceylan, S., Clinton, J. F., Giardini, D., Horleston, A., Margerin, L., et al. (2021). High-frequency seismic events on mars observed by InSight. Journal of Geophysical Research: Planets, 126(2), e2020JE006670. https://doi.org/10.1029/2020JE006670
  • Gao, Y., Yuan, X., Heit, B., Tilmann, F., Herwaarden, D.-P. van, Thrastarson, S., et al. (2021). Impact of the juan fernandez ridge on the pampean flat subduction inferred from full waveform inversion. Geophysical Research Letters, 48(21), e2021GL095509. https://doi.org/10.1029/2021GL095509
  • Hapla, V., Knepley, M. G., Afanasiev, M., Boehm, C., Driel, M. van, Krischer, L., & Fichtner, A. (2021). Fully parallel mesh i/o using PETSc DMPlex with an application to waveform modeling. SIAM Journal on Scientific Computing, 43(2), C127–C153. https://doi.org/10.1137/20M1332748
  • Kordjazi, A., & Coe, J. T. (2021a). An experimental design approach for structural integrity testing of drilled shafts using full waveform inversion. In IFCEE 2021 (pp. 453–462). https://doi.org/10.1061/9780784483404.041
  • Kordjazi, A., & Coe, J. T. (2021b). Numerical simulation of full waveform tomography to evaluate the geological conditions beneath the base of drilled shaft excavations. In IFCEE 2021 (pp. 538–546). https://doi.org/10.1061/9780784483404.049
  • Kordjazi, A., Coe, J. T., & Afanasiev, M. (2021). Nondestructive evaluation of drilled shaft construction anomalies using full waveform tomography of simulated crosshole measurements. Journal of Nondestructive Evaluation, 40(1), 1–13. https://doi.org/10.1007/s10921-020-00728-8
  • Korta Martiartu, N., Simutė, S., Frauenfelder, T., & Rominger, M. B. (2021). Ultrasound longitudinal-wave anisotropy estimation in muscle tissue. https://doi.org/10.36227/techrxiv.15104529.v2
  • Li, X., Becker, T., Ravasi, M., Robertsson, J., & Manen, D.-J. van. (2021). Closed-aperture unbounded acoustics experimentation using multidimensional deconvolution. The Journal of the Acoustical Society of America, 149(3), 1813–1828. https://doi.org/10.1121/10.0003706
  • Mahvelati, S., Kordjazi, A., & Coe, J. T. (2021). Evaluation of pinnacle bedrock topography using surface waves: A numerical simulation of full waveform tomography. In IFCEE 2021 (pp. 394–403). https://doi.org/10.1061/9780784483428.040
  • Marty, P., Boehm, C., & Fichtner, A. (2021). Acoustoelastic full-waveform inversion for transcranial ultrasound computed tomography. In B. C. Byram & N. V. Ruiter (Eds.), Medical imaging 2021: Ultrasonic imaging and tomography (Vol. 11602, pp. 210–229). International Society for Optics; Photonics; SPIE. https://doi.org/10.1117/12.2581029
  • Peng, H., Vasconcelos, I., Sripanich, Y., & Zhang, L. (2021). An analysis of acquisition-related subsampling effects on marchenko focusing, redatuming, and primary estimation. GEOPHYSICS, 86(5), WC75–WC88. https://doi.org/10.1190/geo2020-0914.1
  • Sager, K., Tsai, V. C., Sheng, Y., Brenguier, F., Boué, P., Mordret, A., & Igel, H. (2021). Modelling P waves in seismic noise correlations: advancing fault monitoring using train traffic sources. Geophysical Journal International, 228(3), 1556–1567. https://doi.org/10.1093/gji/ggab389
  • Thomsen, H. R., Koene, E. F. M., Robertsson, J. O. A., & Manen, D.-J. van. (2021). FD-injection-based elastic wavefield separation for open and closed configurations. Geophysical Journal International, 227(3), 1646–1664. https://doi.org/10.1093/gji/ggab275
  • Yang, Y., Gao, A. F., Castellanos, J. C., Ross, Z. E., Azizzadenesheli, K., & Clayton, R. W. (2021). Seismic Wave Propagation and Inversion with Neural Operators. The Seismic Record, 1(3), 126–134. https://doi.org/10.1785/0320210026

2020

  • Bissig, F., Khan, A., Tauzin, B., Sossi, P. A., Munch, F. D., & Giardini, D. (2021). Multifrequency inversion of ps and sp receiver functions: Methodology and application to USArray data. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020350. https://doi.org/10.1029/2020JB020350
  • Driel, M. van, Boehm, C., Krischer, L., & Afanasiev, M. (2020). Accelerating numerical wave propagation using wavefield adapted meshes. Part I: forward and adjoint modelling. Geophysical Journal International, 221(3), 1580–1590. https://doi.org/10.1093/gji/ggaa058
  • Drilleau, M., Beucler, É., Lognonné, P., Panning, M. P., Knapmeyer-Endrun, B., Banerdt, W. B., et al. (2020). MSS/1: Single-station and single-event marsquake inversion. Earth and Space Science, 7(12), e2020EA001118. https://doi.org/10.1029/2020EA001118
  • Herwaarden, D. P. van, Boehm, C., Afanasiev, M., Thrastarson, S., Krischer, L., Trampert, J., & Fichtner, A. (2020). Accelerated full-waveform inversion using dynamic mini-batches. Geophysical Journal International, 221(2), 1427–1438. https://doi.org/10.1093/gji/ggaa079
  • Herwaarden, D. P. van, Afanasiev, M., Thrastarson, S., & Fichtner, A. (2020). Evolutionary full-waveform inversion. Geophysical Journal International, 224(1), 306–311. https://doi.org/10.1093/gji/ggaa459
  • Kordjazi, A., Coe, J. T., & Afanasiev, M. (2020a). A hybrid multi-scale full waveform inversion approach to evaluate the structural integrity of drilled shafts. In Geo-congress 2020 (pp. 190–199). https://doi.org/10.1061/9780784482780.018
  • Kordjazi, A., Coe, J. T., & Afanasiev, M. (2020b). The use of the spectral element method for modeling stress wave propagation in non-destructive testing applications for drilled shafts. In Geo-congress 2020 (pp. 434–443). https://doi.org/10.1061/9780784482803.047
  • Mauerberger, A., Maupin, V., Gudmundsson, Ó., & Tilmann, F. (2020). Anomalous azimuthal variations with 360° periodicity of Rayleigh phase velocities observed in Scandinavia. Geophysical Journal International, 224(3), 1684–1704. https://doi.org/10.1093/gji/ggaa553
  • Sager, K., Boehm, C., Ermert, L., Krischer, L., & Fichtner, A. (2020). Global-scale full-waveform ambient noise inversion. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB018644. https://doi.org/10.1029/2019JB018644
  • Thrastarson, S., Driel, M. van, Krischer, L., Boehm, C., Afanasiev, M., Herwaarden, D.-P. van, & Fichtner, A. (2020). Accelerating numerical wave propagation by wavefield adapted meshes. Part II: full-waveform inversion. Geophysical Journal International, 221(3), 1591–1604. https://doi.org/10.1093/gji/ggaa065
  • Ulrich, I. E., Boehm, C., & Fichtner, A. (2020). Random field interferometry for medical ultrasound. In B. C. Byram & N. V. Ruiter (Eds.), Medical imaging 2020: Ultrasonic imaging and tomography (Vol. 11319, pp. 217–228). International Society for Optics; Photonics; SPIE. https://doi.org/10.1117/12.2559852

2019

  • Korta Martiartu, N., Boehm, C., Hapla, V., Maurer, H., Balic, I. J., & Fichtner, A. (2019). Optimal experimental design for joint reflection-transmission ultrasound breast imaging: From ray- to wave-based methods. The Journal of the Acoustical Society of America, 146(2), 1252–1264. https://doi.org/10.1121/1.5122291

2018

  • Afanasiev, M., Boehm, C., Driel, M. van, Krischer, L., & Fichtner, A. (2018). Flexible high-performance multiphysics waveform modeling on unstructured spectral-element meshes. In SEG technical program expanded abstracts 2018 (pp. 4035–4039). https://doi.org/10.1190/segam2018-2998264.1
  • Afanasiev, M., Boehm, C., Driel, M. van, Krischer, L., Rietmann, M., May, D. A., et al. (2018). Modular and flexible spectral-element waveform modelling in two and three dimensions. Geophysical Journal International, 216(3), 1675–1692. https://doi.org/10.1093/gji/ggy469
  • Bissig, F., Khan, A., Driel, M. van, Stähler, S. C., Giardini, D., Panning, M., et al. (2018). On the detectability and use of normal modes for determining interior structure of mars. Space Science Reviews, 214(8), 1–28. https://doi.org/10.1007/s11214-018-0547-9
  • Boehm, C., & Fichtner, A. (2018). Lazy wave propagation. Geophysical Journal International, 216(2), 984–990. https://doi.org/10.1093/gji/ggy295
  • Boehm, C., Korta Martiartu, N., Vinard, N., Balic, I. J., & Fichtner, A. (2018). Time-domain spectral-element ultrasound waveform tomography using a stochastic quasi-Newton method. In N. Duric & B. C. Byram (Eds.), Medical imaging 2018: Ultrasonic imaging and tomography (Vol. 10580, pp. 92–100). International Society for Optics; Photonics; SPIE. https://doi.org/10.1117/12.2293299
  • Clinton, J., Giardini, D., Böse, M., Ceylan, S., Driel, M. van, Euchner, F., et al. (2018). The marsquake service: Securing daily analysis of SEIS data and building the martian seismicity catalogue for InSight. Space Science Reviews, 214(8), 1–33. https://doi.org/10.1007/s11214-018-0567-5
  • Paitz, P., Sager, K., & Fichtner, A. (2018). Rotation and strain ambient noise interferometry. Geophysical Journal International, 216(3), 1938–1952. https://doi.org/10.1093/gji/ggy528
  • Sager, K., Boehm, C., Ermert, L., Krischer, L., & Fichtner, A. (2018). Sensitivity of seismic noise correlation functions to global noise sources. Journal of Geophysical Research: Solid Earth, 123(8), 6911–6921. https://doi.org/10.1029/2018JB016042
  • Sollberger, D., Greenhalgh, S. A., Schmelzbach, C., Van Renterghem, C., & Robertsson, J. O. A. (2017). 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophysical Journal International, 213(1), 77–97. https://doi.org/10.1093/gji/ggx542
  • Vinard, N., Korta Martiartu, N., Boehm, C., Balic, I. J., & Fichtner, A. (2018). Optimized transducer configuration for ultrasound waveform tomography in breast cancer detection. In N. Duric & B. C. Byram (Eds.), Medical imaging 2018: Ultrasonic imaging and tomography (Vol. 10580, pp. 101–115). International Society for Optics; Photonics; SPIE. https://doi.org/10.1117/12.2293600

2017

  • Dales, P., Audet, P., Olivier, G., & Mercier, J.-P. (2017). Interferometric methods for spatio temporal seismic monitoring in underground mines. Geophysical Journal International, 210(2), 731–742. https://doi.org/10.1093/gji/ggx189
  • Sollberger, D., Schmelzbach, C., Renterghem, C. V., Robertsson, J., & Greenhalgh, S. (2017). Automated, six-component, single-station ground-roll identification and suppression by combined processing of translational and rotational ground motion. In SEG technical program expanded abstracts 2017 (pp. 5064–5068). https://doi.org/10.1190/segam2017-17725405.1

Salvus in other news

The Salvus software suite is Mondaic's flagship code to solve problems like the ones above
... and many more!