Version:
Copy
import os
import numpy as np
import xarray as xr
import salvus.namespace as sn
from salvus.mesh.tools.transforms import interpolate_mesh_to_mesh

# Run simulations on this site.
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")

Mesh-to-mesh interpolation

Micro-tutorial

Interpolating between two unstructured meshes is useful in several situations, such as
  • representing two models on the exact same mesh,
  • increasing the frequency band in an ongoing inversion, and
  • re-meshing a model when a decrease in the minimum velocity begins to result in under-resolved waveforms,
among others.

In this tutorial, we demonstrate how to perform mesh-to-mesh interpolation in 2-D (first) and 3-D (second).

# Gaussian
x, y = np.linspace(0.0, 1.0, 100), np.linspace(0.0, 1.0, 100)
xx, yy = np.meshgrid(x, y, indexing="xy")
g = np.exp(-(((xx - 0.5) ** 2 + (yy - 0.5) ** 2) / (2 * 0.2**2)))

# Pars
vp = 2 * g + 1
rho = vp / 2

# Xarray dataset
ds = xr.Dataset(
    coords={"x": x, "y": y},
    data_vars={"vp": (["x", "y"], vp), "rho": (["x", "y"], rho)},
)

# Salvus wrapper.
m = sn.model.volume.cartesian.GenericModel(name="blob", data=ds)

# Plot
m.ds.vp.plot()
<matplotlib.collections.QuadMesh at 0x7b566bd49210>
p = sn.Project.from_volume_model("proj_2d", m, True)
s = sn.simple_config.source.cartesian.ScalarPoint2D(x=0.25, y=0.25, f=1.0)
r = sn.simple_config.receiver.cartesian.Point2D(
    x=0.75, y=0.75, fields=["phi"], station_code="XX", network_code="XX"
)

p.add_to_project(sn.EventCollection.from_sources(sources=s, receivers=r))
f_max = 10.0

# Common event configuration.
ec = sn.EventConfiguration(
    wavelet=sn.simple_config.stf.Ricker(center_frequency=f_max / 2),
    waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
        end_time_in_seconds=1.0
    ),
)

# Heterogeneous - meshed at f_max.
s0 = sn.SimulationConfiguration(
    name="blob_fmax",
    max_frequency_in_hertz=f_max,
    event_configuration=ec,
    model_configuration=sn.ModelConfiguration(
        background_model=None, volume_models="blob"
    ),
    elements_per_wavelength=2.0,
)

# Homogeneous - meshed at 1.5 * f_max.
s1 = sn.SimulationConfiguration(
    name="homo_fmax_1.5",
    max_frequency_in_hertz=1.5 * f_max,
    event_configuration=ec,
    model_configuration=sn.ModelConfiguration(
        background_model=sn.model.background.homogeneous.IsotropicAcoustic(
            rho=rho.min(), vp=vp.min()
        ),
    ),
    elements_per_wavelength=2.0,
)
for s in [s0, s1]:
    p.add_to_project(s, overwrite=True)
Interpolate the blob mesh onto the homogeneous mesh
# Interpolate.
m2m = interpolate_mesh_to_mesh(
    p.simulations.get_mesh("blob_fmax"),
    p.simulations.get_mesh("homo_fmax_1.5"),
    use_layers=False,
    use_1d_vertical_coordinate=False,
)

# Visualize.
m2m
[2024-11-15 13:28:10,609] INFO: Creating mesh. Hang on.
[2024-11-15 13:28:10,653] INFO: Creating mesh. Hang on.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b5666e30890>
if "blob_fmax_1.5" not in p.simulations.list():
    p.add_to_project(
        sn.UnstructuredMeshSimulationConfiguration(
            name="blob_fmax_1.5", unstructured_mesh=m2m, event_configuration=ec
        )
    )
for name in ["blob_fmax", "blob_fmax_1.5", "homo_fmax_1.5"]:
    p.simulations.launch(
        simulation_configuration=name,
        events=p.events.list(),
        site_name=SALVUS_FLOW_SITE_NAME,
        ranks_per_job=1,
    )
    p.simulations.query(block=True)
[2024-11-15 13:28:10,920] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328036613_985f8fbb96@local
[2024-11-15 13:28:11,662] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328664756_e26afe175b@local
[2024-11-15 13:28:13,653] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328656275_d22933bec8@local
Note that both blob_fmax runs are essentially identical, while the homogeneous run is very different. The small differences in the two blob runs are expected due to the different mesh resolutions and the broadband nature of the source wavelet.
p.viz.waveforms(
    event="event_0000",
    receiver_name="XX.XX",
    data=["blob_fmax", "blob_fmax_1.5", "homo_fmax_1.5"],
    receiver_field="phi",
)
[]
Add 3-D "plume" like structures. Add positive vp perturbations to the crust, negative vp perturbations to the mantle.
# Spherical coordinates
lat = np.linspace(-5.0, 5.0, 101)
lon = np.linspace(-5.0, 5.0, 101)
dep = np.linspace(0.0, 660e3, 101)

# Gaussian
xx, yy, zz = np.meshgrid(lat, lon, dep, indexing="xy")
g = np.zeros_like(xx)
for lats in lat[25:-25:25]:
    for lons in lon[::25]:
        g += np.exp(-(((xx - lats) ** 2 + (yy - lons) ** 2) / (2 * 0.5**2)))

# Xarray dataset
ds = xr.Dataset(
    coords={"latitude": lat, "longitude": lon, "depth": dep},
    data_vars={
        "vp": (["latitude", "longitude", "depth"], g * 20, {"units": "%"}),
    },
    attrs={
        "geospatial_lon_units": "degrees",
        "geospatial_lat_units": "degrees_north",
        "geospatial_vertical_units": "m",
    },
)

ds_mantle = ds.copy()
ds_mantle["vp"] *= -1

# Salvus wrapper.
mc = sn.model.volume.seismology.CrustalModel(name="crust", data=ds)
mm = sn.model.volume.seismology.MantleModel(name="mantle", data=ds)

# Plot depth slice.
mm.ds.vp.isel(depth=0).plot()
<matplotlib.collections.QuadMesh at 0x7b565a990c50>
d = sn.domain.dim3.SphericalChunkDomain(
    lat_center=0.0,
    lon_center=0.0,
    lat_extent=5.0,
    lon_extent=5.0,
    radius_in_meter=6371e3,
)

# Add mantle and crustal model.
p = sn.Project.from_domain("proj_3d", d, True)
for m in [mc, mm]:
    p.add_to_project(m, overwrite=True)
s = sn.simple_config.source.seismology.SideSetVectorPoint3D(
    fr=1e10,
    ft=0.0,
    fp=0.0,
    latitude=-2.5,
    longitude=-2.5,
    depth_in_m=0.0,
    side_set_name="r1",
)

r = sn.simple_config.receiver.seismology.SideSetPoint3D(
    latitude=2.5,
    longitude=2.5,
    fields=["velocity"],
    station_code="XX",
    network_code="XX",
    side_set_name="r1",
)

p.add_to_project(sn.EventCollection.from_sources(sources=s, receivers=r))
p_min = 50.0

# Common event configuration.
ec = sn.EventConfiguration(
    wavelet=sn.simple_config.stf.Ricker(center_frequency=1 / (2 * p_min)),
    waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
        end_time_in_seconds=600.0
    ),
)

# Heterogeneous - meshed at f_max.
s0 = sn.SimulationConfiguration(
    name="blobs",
    tensor_order=2,
    max_depth_in_meters=660e3,
    min_period_in_seconds=p_min,
    event_configuration=ec,
    model_configuration=sn.ModelConfiguration(
        background_model=sn.model.background.one_dimensional.BuiltIn(
            name="prem_iso_one_crust"
        ),
        volume_models=["mantle", "crust"],
    ),
    elements_per_wavelength=2.0,
)

# 1D only - meshed at a slightly lower resolution.
s1 = sn.SimulationConfiguration(
    name="1d",
    tensor_order=2,
    max_depth_in_meters=660e3,
    min_period_in_seconds=p_min,
    event_configuration=ec,
    model_configuration=sn.ModelConfiguration(
        background_model=sn.model.background.one_dimensional.BuiltIn(
            name="prem_iso_one_crust"
        ),
    ),
    elements_per_wavelength=1.5,
)
for s in [s0, s1]:
    p.add_to_project(s, overwrite=True)
p.viz.nb.simulation_setup("blobs")
[2024-11-15 13:28:14,972] INFO: Creating mesh. Hang on.
Interpolating model: mantle.
Interpolating model: crust.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b565ad6b9d0>
Interpolate the "plume" model from the "blobs" mesh to the "1d" mesh. Note that in this case we set use_layers and use_1d_vertical_coordinate to True. This ensures that the interpolation only happens between layers are consistent with each other (i.e. discontinuities are preserved) and that any topography and bathymetry will be flattened before the interpolation occurs.
# Interpolate.
m2m = interpolate_mesh_to_mesh(
    p.simulations.get_mesh("blobs"),
    p.simulations.get_mesh("1d"),
    use_layers=True,
    use_1d_vertical_coordinate=True,
)

# Assert mesh is different.
assert m2m.nelem != p.simulations.get_mesh("blobs").nelem

# Visualize.
m2m
[2024-11-15 13:28:16,470] INFO: Creating mesh. Hang on.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b5679699110>
p.add_to_project(
    sn.UnstructuredMeshSimulationConfiguration(
        name="blobs_reinterp", unstructured_mesh=m2m, event_configuration=ec
    )
)
for name in ["blobs", "blobs_reinterp", "1d"]:
    p.simulations.launch(
        simulation_configuration=name,
        events=p.events.list(),
        site_name=SALVUS_FLOW_SITE_NAME,
        ranks_per_job=1,
    )
    p.simulations.query(block=True)
[2024-11-15 13:28:17,443] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328445527_a87f09c02e@local
[2024-11-15 13:28:32,098] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328101458_7bc5582bac@local
[2024-11-15 13:28:39,761] INFO: Submitting job ...
Uploading 1 files...

🚀  Submitted job_2411151328764232_e5075cae3d@local
Note that both runs with 3-D models are essentially identical, while the homogeneous run is very different. The small differences in the two 3-D runs are expected due to the different mesh resolutions, the broadband nature of the source wavelet, and the heterogeneity of the model.
p.viz.waveforms(
    event="event_0000",
    receiver_name="XX.XX",
    data=["blobs", "blobs_reinterp", "1d"],
    receiver_field="velocity",
)
[]
PAGE CONTENTS