Mapping
class in SalvusOpt. This gives a lot of flexibility, for instance, to use different discretizations (e.g., a coarser mesh for the inversion or an event-dependent mesh for the simulation) or model parameterizations (e.g., inverting only for a subset of the physical parameters).%matplotlib inline
%config Completer.use_jedi = False
import os
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
import matplotlib.pyplot as plt
import numpy as np
import pathlib
import time
import xarray as xr
import salvus.namespace as sn
nx, ny = 10, 10
x = np.linspace(0.0, 3000.0, nx)
y = np.linspace(-1000.0, 0.0, nx)
xx, yy = np.meshgrid(x, y, indexing="ij")
vp = 1500.0 - yy
rho = 1000.0 - yy
ds = xr.Dataset(
data_vars={
"vp": (["x", "y"], vp),
"rho": (["x", "y"], rho),
},
coords={"x": x, "y": y},
)
ds.vp.T.plot()
<matplotlib.collections.QuadMesh at 0x7a7d96fc3010>
p = sn.Project.from_volume_model(
path="project",
volume_model=sn.model.volume.cartesian.GenericModel(name="model", data=ds),
load_if_exists=True,
)
src = sn.simple_config.source.cartesian.ScalarPoint2D(x=500.0, y=-500.0, f=1.0)
rec = sn.simple_config.receiver.cartesian.collections.ArrayPoint2D(
x=np.linspace(100.0, 2900.0, 10), y=0.0, fields=["phi"]
)
p += sn.Event(event_name="event", sources=src, receivers=rec)
p.viz.nb.domain()
ec = sn.EventConfiguration(
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=2.0
),
wavelet=sn.simple_config.stf.Ricker(center_frequency=5.0),
)
p += sn.SimulationConfiguration(
name="sim_model",
elements_per_wavelength=2,
tensor_order=4,
max_frequency_in_hertz=10.0,
model_configuration=sn.ModelConfiguration(
background_model=None, volume_models="model"
),
event_configuration=ec,
absorbing_boundaries=sn.AbsorbingBoundaryParameters(
reference_velocity=2000.0,
number_of_wavelengths=3.5,
reference_frequency=5.0,
),
)
p += sn.MisfitConfiguration(
name="misfit",
observed_data=None,
misfit_function="L2_energy_no_observed_data",
receiver_field="phi",
)
gradients = {}
while not gradients:
gradients = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=1
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
raw_gradient = sn.UnstructuredMesh.from_h5(gradients["event"])
[2024-11-20 13:29:48,148] INFO: Creating mesh. Hang on. [2024-11-20 13:29:48,319] INFO: Submitting job ... [2024-11-20 13:29:48,622] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:29:50,847] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411201329850102_411d8f7da8@local [2024-11-20 13:29:50,946] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:29:52,988] INFO: 1 events have already been submitted. They will not be submitted again.
raw_gradient
. In the widget below, we notice that the sensitivity at the source location and - to a smaller degree - at the receiver locations has significantly higher amplitudes than everywhere else in the domain. This is the result of all energy passing through these points, which is why the waveforms are clearly most sensitive to changes at those locations. However, this clearly does not look like a reasonable model update.raw_gradient
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d8aee3910>
VP
, but could do the same for RHO
.def visualize_gradient(grad, clip=None):
g = grad.model.copy()
mask = np.logical_and(
g.get_element_centroid()[:, 1] > -1000.0,
np.abs(g.get_element_centroid()[:, 0] - 1500.0) < 1500.0,
)
g = g.apply_element_mask(mask)
if clip:
scale = (
clip
* np.max(np.abs(g.elemental_fields["VP"]))
* np.ones_like(g.elemental_fields["VP"])
)
g.elemental_fields["VP"] = np.minimum(g.elemental_fields["VP"], scale)
g.elemental_fields["VP"] = np.maximum(g.elemental_fields["VP"], -scale)
display(g)
prior = p.simulations.get_mesh("sim_model")
absolute
scaling of the physical parameters, there is no difference between both discretizations. Hence the mapped gradient is the same as the raw gradient.map1 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
)
grad1 = map1.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
)
visualize_gradient(grad1, clip=None)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcb1c8490>
VP
in locations different from the source / receivers.visualize_gradient(grad1, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcae95690>
map2 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
)
grad2 = map2.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad2, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcaef5050>
map3 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
receiver_cutout_radius_in_meters=100.0,
)
grad3 = map3.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad3, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcae2bad0>
visualize_gradient(grad3, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d89675090>
mesh = p.simulations.get_mesh(simulation_configuration="sim_model")
roi = np.zeros_like(mesh.connectivity)
mask = mesh.points[mesh.connectivity][:, :, 1] < -100.0
roi[mask] = 1.0
mesh.attach_field("region_of_interest", roi)
map4 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad4 = map4.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad4, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcae04bd0>
map5 = sn.Mapping(
inversion_parameters=["VP"],
scaling="relative_deviation_from_prior",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad5 = map5.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad5, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7dcb10b990>
from salvus.opt.models import UnstructuredModel
smoothed_gradient = UnstructuredModel(
name="smoothed_gradient",
model=p.actions.inversion.smooth_model(
model=grad5.model,
smoothing_configuration=sn.ConstantSmoothing(
smoothing_lengths_in_meters={"VP": [100.0, 50.0]}
),
site_name="local",
ranks_per_job=1,
),
fields=["VP"],
)
visualize_gradient(smoothed_gradient, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d8971b310>
forward_wavefield_sampling_interval
in WavefieldCompression
is thus an important tuning parameter. Depending on the application and meshing strategy a factor between 5 and 100 is typically achieved.gradients = {}
for i in [1, 5, 10, 20]:
gradient_files = {}
while not gradient_files:
gradient_files = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=i
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
gradients[i] = sn.UnstructuredMesh.from_h5(gradient_files["event"])
[2024-11-20 13:30:01,901] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-11-20 13:30:01,937] INFO: Submitting job ... [2024-11-20 13:30:02,097] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:06,368] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411201330374813_aaec6efc42@local [2024-11-20 13:30:06,511] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:08,576] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:08,646] INFO: Some simulations are still running. Please check again to see if they are finished. [2024-11-20 13:30:10,744] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:12,977] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-11-20 13:30:13,046] INFO: Submitting job ... [2024-11-20 13:30:13,158] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:15,382] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411201330385940_c97a8a3405@local [2024-11-20 13:30:15,470] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:17,554] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:17,618] INFO: Some simulations are still running. Please check again to see if they are finished. [2024-11-20 13:30:19,681] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:19,730] INFO: Some simulations are still running. Please check again to see if they are finished. [2024-11-20 13:30:21,811] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:21,878] INFO: Some simulations are still running. Please check again to see if they are finished. [2024-11-20 13:30:23,944] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:26,225] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2024-11-20 13:30:26,271] INFO: Submitting job ... [2024-11-20 13:30:26,401] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:30,675] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411201330680073_740f1c1b3b@local [2024-11-20 13:30:30,777] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2024-11-20 13:30:32,859] INFO: 1 events have already been submitted. They will not be submitted again. [2024-11-20 13:30:32,921] INFO: Some simulations are still running. Please check again to see if they are finished. [2024-11-20 13:30:34,999] INFO: 1 events have already been submitted. They will not be submitted again.
for i in [1, 5, 10, 20]:
grad = map5.adjoint(
mesh=gradients[i].copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
print(f"----------------------------------------------------------")
print(f"Mapped gradient with sampling interval {i}:")
visualize_gradient(grad, clip=0.8)
---------------------------------------------------------- Mapped gradient with sampling interval 1:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d894aa250>
---------------------------------------------------------- Mapped gradient with sampling interval 5:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d89818310>
---------------------------------------------------------- Mapped gradient with sampling interval 10:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d89821890>
---------------------------------------------------------- Mapped gradient with sampling interval 20:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7a7d88f7fe10>