# Three standard Python imports
import os
import numpy as np
import xarray as xr
# The Salvus package.
import salvus.namespace as sn
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
domain = sn.domain.dim2.BoxDomain(x0=0.0, x1=2000.0, y0=0.0, y1=1000.0)
domain.plot()
# Once we have a domain we can initialize a project with a path on disk.
p = sn.Project.from_domain(
path="my_project", domain=domain, load_if_exists=True
)
# Source and receivers exist for multiple dimensions and coordinate systems.
source = sn.simple_config.source.cartesian.VectorPoint2D(
x=600.0, y=700.0, fx=0.0, fy=-1e10
)
receivers = [
sn.simple_config.receiver.cartesian.Point2D(
y=800.0,
x=x,
station_code=f"REC{i + 1}",
# Note that one can specify the desired recording field here.
fields=["displacement"],
)
for i, x in enumerate(np.linspace(1000.0, 1400.0, 5))
]
# The source and receivers object are quite similar to Python dictionaries.
source, receivers
({'location': [600.0, 700.0], 'spatial_type': 'vector', 'spatial_weights': [0.0, -10000000000.0]}, [{'fields': ['displacement'], 'location': [1000.0, 800.0], 'location_code': '', 'network_code': 'XX', 'station_code': 'REC1'}, {'fields': ['displacement'], 'location': [1100.0, 800.0], 'location_code': '', 'network_code': 'XX', 'station_code': 'REC2'}, {'fields': ['displacement'], 'location': [1200.0, 800.0], 'location_code': '', 'network_code': 'XX', 'station_code': 'REC3'}, {'fields': ['displacement'], 'location': [1300.0, 800.0], 'location_code': '', 'network_code': 'XX', 'station_code': 'REC4'}, {'fields': ['displacement'], 'location': [1400.0, 800.0], 'location_code': '', 'network_code': 'XX', 'station_code': 'REC5'}])
# Sources and receivers are tied together in an event. An event can contain an
# arbitrary number of sources and receivers and each event will be one simulation.
event = sn.Event(event_name="event_a", sources=source, receivers=receivers)
# Lastly add the event to the already existing project and visualize it.
p.add_to_project(event)
p.visualizations.notebook.domain()
xarray
library to achieve that. This is a widely used scientific Python library and readers/write to a large variety of file formats exists. Also note that nothing in the next cell is Salvus specific code.# It helps to define the model larger than your domain to avoid
# edge effects during the model interpolation step.
nx = 500
x = np.linspace(-100, 2100, nx)
y = np.linspace(-100, 1100, nx // 2)
xx, yy = np.meshgrid(x, y, indexing="ij")
# Background model.
vp = 3000.0 * np.ones_like(xx)
vs = 1847.5 * np.ones_like(xx)
rho = 2200.0 * np.ones_like(xx)
# Sinc perturbations.
r = ((xx - 1000.0) / 200) ** 2 + ((yy - 500) / 200) ** 2
vp -= (np.sin(r) / r) * 1000
# Assemble into one dataset.
ds = xr.Dataset(
data_vars={
"VP": (["x", "y"], vp),
"VS": (["x", "y"], vs),
"RHO": (["x", "y"], rho),
},
coords={"x": x, "y": y},
)
# Plot it.
ax = ds.VP.T.plot(figsize=(10, 6))
ax.axes.set_aspect("equal")
# Once we have an xarray data set, we can add it to the project.
model = sn.model.volume.cartesian.GenericModel(name="my_volume_model", data=ds)
p.add_to_project(model, overwrite=True)
sc = sn.SimulationConfiguration(
name="my_first_simulation",
# Mesh resolution settings.
max_frequency_in_hertz=30.0,
elements_per_wavelength=2.0,
tensor_order=2,
# Using the volumetric model we specified before.
model_configuration=sn.ModelConfiguration(
volume_models=["my_volume_model"],
),
# Event specific configuration.
event_configuration=sn.EventConfiguration(
# Source wavelet.
wavelet=sn.simple_config.stf.Ricker(center_frequency=15.0),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=0.6
),
),
# Absorbing boundaries everywhere but the top.
absorbing_boundaries=sn.AbsorbingBoundaryParameters(
reference_frequency=15.0,
number_of_wavelengths=0.0,
reference_velocity=1900.0,
free_surface=["y1"],
),
)
# As always, we'll add it to the project, and visualize the full setup.
p.add_to_project(
sc,
overwrite=True,
)
p.visualizations.notebook.simulation_setup("my_first_simulation")
[2025-01-09 21:39:10,510] INFO: Creating mesh. Hang on.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x75166f8d7f90>
# It is finally time to launch the simulation.
p.simulations.launch(
simulation_configuration="my_first_simulation",
events=p.events.list(),
# Determines where and how to run. Depending on the site
# it will either directly launch, use a job queuing system, use GPUs, ...
# The simulations will be automatically load balanced.
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=2,
# For many applications, volumetric output is not necessary, for
# illustrative purposes we use it here.
extra_output_configuration={
"volume_data": {
"sampling_interval_in_time_steps": 10,
"fields": ["displacement"],
},
},
)
p.simulations.query(block=True)
[2025-01-09 21:39:11,690] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2501092139780832_1702c9a894@local
True
# Results can be queried per event from the project.
event_data = p.waveforms.get("my_first_simulation", p.events.list()[0])[0]
event_data
<salvus.flow.collections.event_data.EventData at 0x75166d71b0d0>
# Plot receiver data.
event_data.plot(receiver_field="displacement", component="X")
# It is of course possible to visualize the volumetric wavefield in Paraview
# and we do this in other tutorials. Here we interpolate the wavefield
# to a regular gridded xarray which is oftentimes helpful for future analysis.
ds_wavefield = sn.wavefield_output_to_xarray(
wo=event_data.get_wavefield_output(
output_type="volume",
field="displacement",
# We could access all time steps here but for larger examples this would be
# excessive.
time_steps=slice(30, 31),
),
points=[np.linspace(0, 2000, 200), np.linspace(0, 1000, 100)],
)
# Standard xarray functionality.
ax = ds_wavefield.sel(c=0, t=ds_wavefield.t[0]).T.plot(
shading="gouraud", infer_intervals=False, figsize=(10, 6)
)
ax.axes.set_aspect("equal")