numpy
or xarray
. To remedy this, Salvus contains a lightweight
WavefieldOutput
class that enables the simple extraction of stored
quantities to regular grids. Let's dive in and take a look.import os
import numpy as np
import pathlib
import salvus.namespace as sn
from salvus.mesh.unstructured_mesh_utils import read_model_from_h5
from salvus.toolbox.helpers import wavefield_output
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
layered_meshing
API. The use of this API, however, is
not required to use the functionality presented herein, and any volumetric
simulation output from a Salvus simulation will suffice.domain_2d = sn.domain.dim2.BoxDomain(x0=0, x1=1, y0=0, y1=1)
material = sn.layered_meshing.material.elastic.Velocity.from_params(
rho=1.0, vp=1.0, vs=np.sqrt(1 / 3)
)
mesh_2d = sn.layered_meshing.mesh_from_domain(
domain=domain_2d,
model=material,
mesh_resolution=sn.MeshResolution(
reference_frequency=10.0, elements_per_wavelength=2.0
),
)
mesh_2d
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x76f548f24410>
p_2d = sn.Project.from_domain(
path="project_2d", domain=domain_2d, load_if_exists=True
)
src_2d = sn.simple_config.source.cartesian.VectorPoint2D(
x=0.5,
y=1.0,
fx=0.0,
fy=-1.0,
)
p_2d.add_to_project(sn.Event(event_name="event", sources=[src_2d]))
p_2d.add_to_project(
sn.UnstructuredMeshSimulationConfiguration(
name="sim_2d",
unstructured_mesh=mesh_2d,
event_configuration=sn.EventConfiguration(
wavelet=sn.simple_config.stf.Ricker(center_frequency=2.5),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=2.0
),
),
),
)
p_2d.viz.nb.simulation_setup("sim_2d", events=["event"])
<salvus.flow.simple_config.simulation.waveform.Waveform object at 0x76f5f04eb890>
p_2d.simulations.launch(
simulation_configuration="sim_2d",
events=p_2d.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=1,
extra_output_configuration={
"volume_data": {
"sampling_interval_in_time_steps": 10,
"fields": ["velocity"],
},
},
)
p_2d.simulations.query(block=True)
[2025-01-09 22:02:18,917] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2501092202018170_70631e3898@local
True
wavefield_output
module to work with the volumetric data
that we just output.out_2d = p_2d.simulations.get_simulation_output_directory("sim_2d", "event")
vel_wo = wavefield_output.WavefieldOutput.from_file(
pathlib.Path(
out_2d,
"volume_data_output.h5",
),
"velocity",
"volume",
)
wavefield_output_to_xarray
function which, as one might
expect, returns the wavefield interpolated onto an xarray.DataArray
. Below
we pass a list of length 2 containing points we want to extract to in each
dimension. Passing a list in this manner will result in an extraction to a
rectilinear grid spanned by the cartesian product of the input arrays, similar
to the behavior of np.meshgrid
.vel_2d = wavefield_output.wavefield_output_to_xarray(
vel_wo,
points=[np.linspace(0, 1, 101), np.linspace(0, 1, 101)],
)
vel
along arbitrary axes in
space and time using xarray
's powerful indexing tools, and plot the result
directly in the notebook. Below we plot the y- (second) component of velocity
at the 35th output slice.vel_2d.isel(c=1, t=35).T.plot(shading="gouraud", infer_intervals=False)
<matplotlib.collections.QuadMesh at 0x76f546cf1350>
a, b = 0.5, 0.5
u = np.linspace(0, 2 * np.pi, 1001)
x = a * np.sin(u) / (1 + np.cos(u) ** 2) + 0.5
y = b * np.sin(u) * np.cos(u) / (1 + np.cos(u) ** 2) + 0.5
vel_sg8 = wavefield_output.wavefield_output_to_xarray(
vel_wo, points=np.column_stack((x, y))
)
vel_sg8.isel(c=1).plot(
shading="gouraud", infer_intervals=False, yincrease=False
)
<matplotlib.collections.QuadMesh at 0x76f5454870d0>
p_2d.add_to_project(
sn.UnstructuredMeshSimulationConfiguration(
name="sim_2d_short",
unstructured_mesh=mesh_2d,
event_configuration=sn.EventConfiguration(
wavelet=sn.simple_config.stf.Ricker(center_frequency=2.5),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=0.5
),
),
),
)
extra_output_configuration
.p_2d.simulations.launch(
simulation_configuration="sim_2d_short",
events=p_2d.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=1,
extra_output_configuration={
"final_time_data": {"fields": ["velocity"]},
},
)
p_2d.simulations.query(block=True)
[2025-01-09 22:02:21,446] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2501092202449300_f0738d9609@local
True
mesh_out = mesh_2d.copy()
mesh_out.change_tensor_order(4)
out_2d = p_2d.simulations.get_simulation_output_directory(
"sim_2d_short", "event"
)
final_output = read_model_from_h5(out_2d / "final_time_data_output.h5")
mesh_out.elemental_fields.clear()
mesh_out.attach_field("velocity_Y", final_output["velocity_Y"])
mesh_out
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x76f5465e3390>
layered_meshing
API.domain_3d = sn.domain.dim3.BoxDomain(x0=0, x1=1, y0=0, y1=1, z0=0, z1=1)
mesh_3d = sn.layered_meshing.mesh_from_domain(
domain=domain_3d,
model=material,
mesh_resolution=sn.MeshResolution(
reference_frequency=5.0, elements_per_wavelength=2.0
),
)
mesh_3d
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x76f545b8b290>
p_3d = sn.Project.from_domain(
path="project_3d", domain=domain_3d, load_if_exists=True
)
src_3d = sn.simple_config.source.cartesian.VectorPoint3D(
x=0.5,
y=0.5,
z=1.0,
fx=0.0,
fy=0.0,
fz=-1.0,
)
p_3d.add_to_project(sn.Event(event_name="event", sources=[src_3d]))
p_3d.add_to_project(
sn.UnstructuredMeshSimulationConfiguration(
name="sim_3d",
unstructured_mesh=mesh_3d,
event_configuration=sn.EventConfiguration(
wavelet=sn.simple_config.stf.Ricker(center_frequency=2.5),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=1.0
),
),
),
)
p_3d.viz.nb.simulation_setup("sim_3d", events=["event"])
<salvus.flow.simple_config.simulation.waveform.Waveform object at 0x76f54669ea10>
p_3d.simulations.launch(
simulation_configuration="sim_3d",
events=p_3d.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=1,
extra_output_configuration={
"volume_data": {
"sampling_interval_in_time_steps": 10,
"fields": ["velocity"],
},
"surface_data": {
"sampling_interval_in_time_steps": 10,
"fields": ["velocity"],
"side_sets": ["z1"],
},
},
)
p_3d.simulations.query(block=True)
[2025-01-09 22:02:22,577] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2501092202579923_93ada076da@local
True
WavefieldOutput
class to help us manipulate the
data we just created. Here we create 2 objects: one for volume and one for
surface data.output_dir = p_3d.simulations.get_simulation_output_directory(
"sim_3d", "event"
)
vel_3d_vol_wo = wavefield_output.WavefieldOutput.from_file(
pathlib.Path(output_dir, "volume_data_output.h5"), "velocity", "volume"
)
vel_3d_srf_wo = wavefield_output.WavefieldOutput.from_file(
pathlib.Path(output_dir, "surface_data_output.h5"), "velocity", "surface"
)
drop_coordinate
method to drop a coordinate from the
output. Since we know we stored the surface output along the "z1"
, or top,
side set, we can drop the z
, or last, dimension to pull out a surface.vel_3d_srf_wo_xy = vel_3d_srf_wo.drop_dimension(2)
xarray
.vel_3d_srf = wavefield_output.wavefield_output_to_xarray(
vel_3d_srf_wo_xy, [np.linspace(0, 1, 101)] * 2
)
vel_3d_srf.isel(c=2, t=25).plot(shading="gouraud", infer_intervals=False)
<matplotlib.collections.QuadMesh at 0x76f5413718d0>
vel_3d_vol = wavefield_output.wavefield_output_to_xarray(
vel_3d_vol_wo, [np.linspace(0, 1, 101)] * 2 + [1.0]
)
vel_3d_vol.isel(c=2, t=25).sel(z=1.0).plot(
shading="gouraud", infer_intervals=False
)
<matplotlib.collections.QuadMesh at 0x76f540dbe750>