import matplotlib.pyplot as plt
import numpy as np
import os
import xarray as xr
import dataclasses
import salvus.namespace as sn
# General configuration variables
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
PROJECT_DIR = "project"
domain = sn.domain.dim3.BoxDomain(
x0=0, x1=0.1, y0=0.0, y1=0.1, z0=-0.0, z1=0.025
)
p = sn.Project.from_domain(PROJECT_DIR, domain, load_if_exists=True)
p.viz.nb.domain()
SideSetPoint3D
and with initial point [x, y, 2.0]
and direction
z
, intersecting with side_set z1
.src_3d = sn.simple_config.source.cartesian.VectorPoint3D(
x=0.03, y=0.065, z=0.025, fx=0.0, fy=0.0, fz=-1.0
)
# Create a receiver grid with regular spacing
x_locations_recs = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
y_locations_recs = np.linspace(0.01, 0.09, 50)
recs = [
sn.simple_config.receiver.cartesian.SideSetPoint3D(
point=[x, y, 2.0],
direction="z",
side_set_name="z1",
station_code=f"TOP-X{int(ix)}-Y{int(iy)}",
fields=["displacement"],
)
for ix, x in enumerate(x_locations_recs)
for iy, y in enumerate(y_locations_recs)
]
# Package up sources and receivers into an event collection
p.add_to_project(
sn.EventCollection.from_sources(
sources=[src_3d],
receivers=recs,
)
)
# Create a homogeneous, isotropic, elastic model
bm = sn.model.background.homogeneous.IsotropicElastic(
vp=1000.0, rho=1000.0, vs=1000 / (2.0**0.5)
)
mc_background = sn.ModelConfiguration(background_model=bm)
# Set a fixed end time, as predicted by the user
wsc = sn.WaveformSimulationConfiguration(end_time_in_seconds=0.00030)
# Use a maximum frequency of 50 kHz. This strongly influences the meshing
# resolution, and thereby the cost of running a simulation
max_frequency = 30e3
# Create an event configuration by setting the source time function
event_configuration = sn.EventConfiguration(
waveform_simulation_configuration=wsc,
wavelet=sn.simple_config.stf.Ricker(center_frequency=0.5 * max_frequency),
)
# Add everything into a simulation configuration and add it to the project
p.add_to_project(
sn.SimulationConfiguration(
name="simulation_homogeneous",
elements_per_wavelength=2.0,
tensor_order=1,
max_frequency_in_hertz=max_frequency,
model_configuration=mc_background,
event_configuration=event_configuration,
)
)
sn.model.volume.cartesian.GenericModel
.def get_ellipsoidal_inclusion(
domain,
bm,
vp_perturbation: float = 0.3,
vs_perturbation: float = -0.2,
rho_perturbation: float = 0.8,
):
"""
Returns an xarray limited to the `domain` bounds. It centers a
ellipsoidal inclusion of vp, vs and rho based on the values of the
passed `bm`.
"""
# Define resolution of xarray
nx, ny, nz = 100, 100, 100
# Get bounds
(x0, x1), (y0, y1), (z0, z1) = domain.bounds.sorted_bounds
# Get domain dimensions
xl, yl, zl = x1 - x0, y1 - y0, z1 - z0
# Get midpoint
xm, ym, zm = (x1 + x0) / 2.0, (y1 + y0) / 2.0, (z1 + z0) / 2.0
# Create coordinate arrays
x = np.linspace(x0, y1, nx)
y = np.linspace(y0, y1, ny)
z = np.linspace(z0, z1, nz)
xx, yy, zz = np.meshgrid(x, y, z, indexing="ij")
# Create parameter background fields
vp = bm.vp * np.ones_like(xx)
vs = bm.vs * np.ones_like(xx)
rho = bm.rho * np.ones_like(xx)
# Compute ellipsoidal mask
mask = (
np.sqrt(
((xx - xm) / xl) ** 2
+ ((yy - ym) / yl) ** 2
+ ((zz - zm) / zl) ** 2
)
< 0.25
)
# Use the mask to perturb the model
vp[mask] *= 1.0 + vp_perturbation
vs[mask] *= 1.0 + vs_perturbation
rho[mask] *= 1.0 + rho_perturbation
# Convert the numpy arrays to an xarray dataset
ds = xr.Dataset(
data_vars={
"vp": (["x", "y", "z"], vp),
"vs": (["x", "y", "z"], vs),
"rho": (["x", "y", "z"], rho),
},
coords={"x": x, "y": y, "z": z},
)
return ds
volumetric_model = get_ellipsoidal_inclusion(domain, bm)
.sel
to verify our volume model.plt.figure()
# Create a horizontal slice (z fixed to midpoint)
volumetric_model["vp"].sel(z=0.0125, method="nearest").plot()
plt.gca().set_aspect("equal")
plt.figure()
# Create a vertical slice (x fixed to midpoint). The transpose is taken simply
# to use the vertical axis where we expect it to.
volumetric_model["vs"].sel(x=0.05, method="nearest").transpose("z", "y").plot()
plt.gca().set_aspect("equal")
plt.figure()
# Create a vertical slice (x fixed to midpoint). The transpose is taken simply
# to use the vertical axis where we expect it to.
volumetric_model["rho"].sel(x=0.05, method="nearest").transpose(
"z", "y"
).plot()
plt.gca().set_aspect("equal")
# Add the model with inclusion to the project
p.add_to_project(
sn.model.volume.cartesian.GenericModel(
name="model_with_inclusion", data=get_ellipsoidal_inclusion(domain, bm)
)
)
# Create a model configuration to be used by the simulation configuration
mc_3d = sn.ModelConfiguration(
background_model=None, volume_models="model_with_inclusion"
)
# Recreate the same simulation configuration, but with the new model
p.add_to_project(
sn.SimulationConfiguration(
name="simulation_with_inclusion",
elements_per_wavelength=2.0,
tensor_order=1,
max_frequency_in_hertz=max_frequency,
model_configuration=mc_3d,
event_configuration=event_configuration,
)
)
p.viz.nb.simulation_setup("simulation_homogeneous", "event_0000")
[2024-11-15 13:35:11,333] INFO: Creating mesh. Hang on.
<salvus.flow.simple_config.simulation.waveform.Waveform object at 0x7123bc0c9cd0>
p.viz.nb.simulation_setup("simulation_with_inclusion", "event_0000")
[2024-11-15 13:35:12,635] INFO: Creating mesh. Hang on.
<salvus.flow.simple_config.simulation.waveform.Waveform object at 0x7123f9a429d0>
mesh_A = p.simulations.get_mesh("simulation_homogeneous")
mesh_B = p.simulations.get_mesh("simulation_with_inclusion")
print(
f"Number of elements:\n\thomogeneous model: {mesh_A.nelem}\n"
f"\tmodel with inclusion: {mesh_B.nelem}"
)
Number of elements: homogeneous model: 243 model with inclusion: 363
p.simulations.launch(
simulation_configuration="simulation_homogeneous",
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=2,
)
p.simulations.launch(
simulation_configuration="simulation_with_inclusion",
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=2,
)
[2024-11-15 13:35:13,343] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411151335524990_cd1c66d26a@local
[2024-11-15 13:35:13,943] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2411151335959763_f85f907bf4@local
1
for sc in p.simulations.list():
print(f"Checking in on simulation `{sc}`")
p.simulations.query(simulation_configuration=sc, events="event_0000")
Checking in on simulation `simulation_homogeneous`
Checking in on simulation `simulation_with_inclusion`
p.simulations.query(block=True)
True
waveforms.get
. This will return a list of object of type
salvus.flow.collections.event_data.EventData
. Taking the first of these
objects, it can be directly plotted for the component and field of interest.synthetic_data = p.waveforms.get(
data_name="simulation_homogeneous", events=p.events.list()[0]
)[0]
synthetic_data_inclusion = p.waveforms.get(
data_name="simulation_with_inclusion", events="event_0000"
)[0]
synthetic_data.plot(receiver_field="displacement", component="X")
synthetic_data_inclusion.plot(receiver_field="displacement", component="X")
shotgather
, part
of project.viz
/ project.visualizations
. This function allows you to
plot multiple datasets together in one go.p.viz.shotgather(
data=["simulation_homogeneous", "simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
)
<Axes: title={'center': 'Event: event_0000 | field: displacement | component: X'}, xlabel='Receiver Index', ylabel='Time [s]'>
project.visualizations.custom_gather
. In
addition to shot gathers, one is able to plot custom gathers with this
method, by providing at least one of three callbacks:sort_by
-- useful for ordering receiversfilter_by
-- useful for filtering receiversselect_by
-- useful for complex operations to select specific receiverssort_by: Callback function called with the receiver objects to determine the sorting. Works like the `key` callback for the standard Python `sorted()` method. filter_by: Callback function called with the receiver objects in internal Salvus format to determine the filtering. Works like the callback for the standard Python `filter()` method. For complex filter operations requiring all receivers, defer to the `select_by` method. select_by: Callback function called with a list of tuples in the receiver objects in both internal Salvus and ObsPy Stream format, as well as the EventData object.
interleave: Whether or not to alternatingly plot data. If false, traces from all data will be plotted on top of each other. colors: The colors for the individual traces. Must be exactly as many colors as data items. If not given, it will attempt to choose suitable colors. alpha: The opacity of all data, as used in Matplotlib. useful when setting interleave to false. plot_using: The configuration of the axis to create or reuse. Will default to the standard size as defined in the PlotProperties dataclass. data_selection_configuration: The data selection configuration to use.
def sort_by_distance_from_midpoint(receiver_objects):
# A note, depending on user input, the receivers will have different types,
# and with that, different attributes. For instance, in case of normal
# point receivers, there would be no attribute `point` but only
# `location`.
X, Y, Z = receiver_objects.point
return (X - 0.5) ** 2 + (Y - 0.5) ** 2
ax = p.viz.custom_gather(
data=["simulation_homogeneous", "simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
sort_by=sort_by_distance_from_midpoint,
interleave=True,
alpha=1.0,
)
def filter_line(receiver_objects):
X, Y, Z = receiver_objects.point
if np.isclose(X, 0.03):
return True
return False
ax = p.viz.custom_gather(
data=["simulation_homogeneous", "simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
filter_by=filter_line,
interleave=False,
alpha=1.0,
)
def sort_by_Y_reversed(receiver_objects):
X, Y, Z = receiver_objects.point
return -Y
ax = p.viz.custom_gather(
data=["simulation_homogeneous", "simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
filter_by=filter_line,
sort_by=sort_by_Y_reversed,
interleave=True,
alpha=1.0,
)
def filter_line_subset(receiver_objects):
X, Y, Z = receiver_objects.point
if np.isclose(X, 0.03) and 0.055 < Y < 0.075:
return True
return False
@dataclasses.dataclass
class PlotProperties:
width = 5
height = 5
dpi = 300
ax = p.viz.custom_gather(
data=["simulation_homogeneous", "simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
filter_by=filter_line_subset,
sort_by=sort_by_Y_reversed,
interleave=False,
alpha=0.7,
plot_using=PlotProperties(),
)
# As the axes is passed back, we can alter it to suit our preferences
# Zoom in on the time axis
ax.set_ylim([2.5e-4, 1.2e-4])
# Add the filter details to the title
new_title = (
ax.get_title()
+ "\nFilter applied to receivers: X = 0.05, 0.055 < Y < 0.075"
)
ax.set_title(new_title)
Text(0.5, 1.0, 'Event: event_0000 | field: displacement | component: X\nFilter applied to receivers: X = 0.05, 0.055 < Y < 0.075')
def select_by_complex(receiver_object_list_of_tuples, event_data): # unpack salvus_internal_receivers = [ tup[0] for tup in receiver_object_list_of_tuples ] obspy_stream_per_receivers = [ tup[1] for tup in receiver_object_list_of_tuples ] # Initialize an empty list to store the selected tuples selected_receiver_object_list = [] # Loop through the tuples and apply your selection criteria for i in range(len(receiver_object_list_of_tuples)): salvus_receiver = salvus_internal_receivers[i] obspy_stream = obspy_stream_per_receivers[i] # Apply your selection criteria here # For example, you might check some condition based on event_data if some_condition(salvus_receiver, event_data): selected_receiver_object_list.append( (salvus_receiver, obspy_stream) ) return selected_receiver_object_list
sort_by
is overwritten.def select_by_complex(receiver_object_list_of_tuples, event_data):
# unpack
salvus_internal_receivers = [
tup[0] for tup in receiver_object_list_of_tuples
]
obspy_stream_per_receivers = [
tup[1] for tup in receiver_object_list_of_tuples
]
# Initialize an empty list to store the selected tuples
selected_receiver_object_list = []
first_big_amplitudes = [] # custom sorting key
# Loop through the tuples and apply the selection criteria
for i in range(len(receiver_object_list_of_tuples)):
salvus_receiver = salvus_internal_receivers[i]
obspy_stream = obspy_stream_per_receivers[i]
# Get maximum amplitude from trace 0
max_amplitude = obspy_stream.traces[0].max()
# Sort by first big amplitude
first_big_amplitude = np.argmax(
obspy_stream.traces[0].data > max_amplitude * 0.1
)
# Apply the selection criterium, and append resulting receivers
if max_amplitude > 3e-9:
selected_receiver_object_list.append(
(salvus_receiver, obspy_stream)
)
# Save the sorting key
first_big_amplitudes.append(first_big_amplitude)
# Sort tuples with the sorting key
sorted_selection = [
tup
for _, tup in sorted(
zip(first_big_amplitudes, selected_receiver_object_list),
key=lambda x: x[0],
)
]
return sorted_selection
ax = p.viz.custom_gather(
data=["simulation_with_inclusion"],
event="event_0000",
receiver_field="displacement",
component="X",
sort_by=sort_by_distance_from_midpoint,
select_by=select_by_complex,
interleave=False,
alpha=0.7,
)
EventData.get_data_cube
method, to directly get the data for your own postprocessing.t, d = synthetic_data_inclusion.get_data_cube(
receiver_field="displacement",
component="X",
filter_by=filter_line,
select_by=select_by_complex,
)
print(t.shape, d.shape)
(735,) (37, 735)