# Variable used in the notebook to determine which site
# is used to run the simulations.
import os
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pathlib
import xarray as xr
import salvus.namespace as sn
# Use xarray to define the blob in vs.
def get_target_model():
x = np.linspace(-500, 500, 200)
y = np.linspace(-500, 500, 200)
xx, yy = np.meshgrid(x, y, indexing="ij")
# Simple gaussian blob around the center of the domain.
d = (xx**2 + yy**2) ** 0.5
vs = np.exp(-0.5 * (d / 100.0) ** 2) * 250.0 + 1000.0
ds = xr.Dataset(
data_vars={"vs": (["x", "y"], vs)}, coords={"x": x, "y": y}
)
return ds
target_model = get_target_model()
target_model.vs.plot()
<matplotlib.collections.QuadMesh at 0x764cfa5f8190>
# Build mesh for the initial model.
initial_model_mesh = sn.simple_mesh.CartesianHomogeneousIsotropicElastic2D(
vp=1500.0,
vs=1000.0,
rho=2000.0,
x_max=float(target_model.x.data.ptp()),
y_max=float(target_model.y.data.ptp()),
max_frequency=10.0,
tensor_order=1,
).create_mesh()
# Shift.
initial_model_mesh.points[:, 0] += target_model.x.data.min()
initial_model_mesh.points[:, 1] += target_model.y.data.min()
target_model_mesh = initial_model_mesh.copy()
target_model_mesh = sn.toolbox.interpolate_cartesian(
data=target_model, mesh=target_model_mesh, extrapolate=True
)
target_model_mesh
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x764cfa572590>
true_model
.# Explosive source in one corner of the mesh.
src = sn.simple_config.source.cartesian.MomentTensorPoint2D(
mxx=10000.0,
myy=10000.0,
mxy=0.0,
x=300.0,
y=300.0,
source_time_function=sn.simple_config.stf.Ricker(center_frequency=5.0),
)
# A centered ring of receivers.
recs = sn.simple_config.receiver.cartesian.collections.RingPoint2D(
x=0, y=0, radius=200.0, count=50, fields=["displacement"]
)
# Create two simulation objects.
# (1) The target will serve as observed data.
w_target = sn.simple_config.simulation.Waveform(
mesh=target_model_mesh, sources=src, receivers=recs
)
w_target.physics.wave_equation.end_time_in_seconds = 1.0
w_target
# (2) The initial model will be used to compute synthetics.
w_initial = sn.simple_config.simulation.Waveform(
mesh=initial_model_mesh, sources=src, receivers=recs
)
w_initial.physics.wave_equation.end_time_in_seconds = 1.0
# Must store the checkpoints for the subsequent adjoint run.
w_initial.output.volume_data.format = "hdf5"
w_initial.output.volume_data.filename = "output.h5"
w_initial.output.volume_data.fields = ["adjoint-checkpoint"]
w_initial.output.volume_data.sampling_interval_in_time_steps = (
"auto-for-checkpointing"
)
# Create the "observed data".
j_target = sn.api.run(
input_file=w_target,
site_name=SALVUS_FLOW_SITE_NAME,
output_folder="output_target",
overwrite=True,
)
# Forward run for the synthetics.
j_initial = sn.api.run(
input_file=w_initial,
site_name=SALVUS_FLOW_SITE_NAME,
output_folder="output_initial",
overwrite=True,
# Don't delete the remote files as they are needed
# for the adjoint run!
delete_remote_files=False,
)
SalvusJob `job_2501092214189328_b0339840f9` running on `local` with 4 rank(s). Site information: * Salvus version: 2024.1.2 * Floating point size: 32
* Downloaded 341.0 KB of results to `output_target`. * Total run time: 1.92 seconds. * Pure simulation time: 1.22 seconds. SalvusJob `job_2501092214720629_4c3f41ea3a` running on `local` with 4 rank(s). Site information: * Salvus version: 2024.1.2 * Floating point size: 32 -> Current Task: Time loop complete* Downloaded 341.4 KB of results to `output_initial`. * Total run time: 1.10 seconds. * Pure simulation time: 0.74 seconds.
# Load the data from both runs, and visualize.
#
# Note that this is a vectorial receiver and thus the component
# has to be specified.
target_event = j_target.get_as_event()
initial_event = j_initial.get_as_event()
target_event.plot(receiver_field="displacement", component="X")
initial_event.plot(receiver_field="displacement", component="X")
EventData
objects.import typing
import numpy as np
import obspy
from salvus.project.tools.data_selection import compute_window
def compute_temporal_weights(
st: obspy.Stream,
receiver: sn.simple_config.receiver._Base,
sources: typing.List[sn.simple_config.source._Base],
) -> typing.Dict[str, typing.List[np.ndarray]]:
"""
Function computing temporal weights.
This example function will taper to zero after the first arrival
which is just computed geometrically in this case.
Args:
st: The input data, one trace per component. Don't
modify it!
receiver: The receiver for the data.
sources: All sources for this event. Just one source
in many cases.
Returns:
A dictionary with a list of weight sets per component.
"""
# This project only has a single source per event.
# Does not yet account for the source time function.
distance = np.linalg.norm(
np.array(receiver.location) - np.array(sources[0].location)
)
first_arrival = distance / 1000.0 - 0.1 # Account for STF
taper_length = 0.1
weights = {}
for tr in st:
all_weights_for_components = []
component = tr.stats.channel[-1]
times = tr.times() + tr.stats.starttime.timestamp
# Only a single window for each trace.
weights[component] = [
{
"values": compute_window(
t=times,
window_center=first_arrival + 0.05,
window_width=0.2,
ramp_width=0.1,
)
}
]
return weights
# Can be hooked up to the event that will then process
# the data on the fly.
initial_event.register_temporal_weights_function(compute_temporal_weights)
target_event.register_temporal_weights_function(compute_temporal_weights)
# Now the processing is always applied for any subsequent action.
initial_event.plot(receiver_field="displacement", component="X")
target_event.plot(receiver_field="displacement", component="X")
EventMisfit
class takes care of efficiently computing everything when required and makes sure to create adjoint sources that are valid and fully compatible with the rest of Salvus. Things like receiver rotations are also taken care of.# Now construct a misfit object.
event_misfit = sn.EventMisfit(
# For the purpose of this gradient we treat the simulation
# with the target model as observed data and the simulation
# with the intitial model as the synthetic data.
observed_event=target_event,
synthetic_event=initial_event,
# Choose misfit function - can also be a function.
misfit_function="L2",
# Some misfit function take extra keyword arguments.
extra_kwargs_misfit_function={},
# Let's measure on the displacement.
receiver_field="displacement",
)
print("Total misfit for event:", event_misfit.misfit_value)
Total misfit for event: 1.165355091356927e-19
from salvus.flow.simple_config.simulation_generator import (
create_adjoint_waveform_simulation,
)
# Use the adjoint source to generate a simulation object for the
# adjoint simulation. It is aware of the parameters of the forward
# simulation and can thus guarantee everything is compatible.
adjoint_source_filename = pathlib.Path("adjoint_source.h5")
event_misfit.write(filename=adjoint_source_filename)
w_adjoint = create_adjoint_waveform_simulation(
meta_json_forward_run=event_misfit.synthetic_event.meta_json_contents,
adjoint_source_file=adjoint_source_filename,
gradient_parameterization="rho-vp-vs",
)
# Last but not least actually run the adjoint simulation to compute
# the gradient.
sn.api.run(
input_file=w_adjoint,
site_name=SALVUS_FLOW_SITE_NAME,
output_folder="output_gradient",
overwrite=True,
)
# Time to clean up the forward run.
j_initial.delete()
# Finally visualize the gradient.
from salvus.mesh.unstructured_mesh import UnstructuredMesh
UnstructuredMesh.from_h5("./output_gradient/gradient.h5")
SalvusJob `job_2501092214705152_7ed1b4e1e2` running on `local` with 4 rank(s). Site information: * Salvus version: 2024.1.2 * Floating point size: 32
* Downloaded 85.5 KB of results to `output_gradient`. * Total run time: 3.25 seconds. * Pure simulation time: 2.80 seconds. 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/tmp/job_2501092214720629_4c3f41ea3a/output_elastic_volume.xdmf ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/tmp/job_2501092214720629_4c3f41ea3a/output.h5 ... 🗑 Deleting folder /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/tmp/job_2501092214720629_4c3f41ea3a ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/local_submission_template.py ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/PID.txt ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/stderr ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/stdout ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/input/mesh.h5 ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/input/input.toml ... 🗑 Deleting folder /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/input ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/SUCCESS ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/output/receivers.h5 ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/output/progress.json ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/output/meta.json ... 🗑 Deleting folder /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/output ... 🗑 Deleting file /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a/run_job.sh ... 🗑 Deleting folder /builds/Mondaic/core/TutorialsAndIntegrationTests/SALVUS_INSTALL/SalvusFlow/run/job_2501092214720629_4c3f41ea3a ...
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x764cf938e790>