To keep the notation simple, we consider the scalar wave equation
c−1(x)∂t2u(x,t)−Δu(x,t)=f(x,t).
with homogenuous initial conditions
u(x,0)=0,∂tu(x,0)=0,
and some boundary conditions, which we will ignore for now - more here
The above set of equations are called the strong form of the wave equation.
Finite-element methods, however solve the weak or variational form of the PDE.
where the last term is a surface integral along the boundary ∂Ω of the domain Ω, and n is the unit normal point outward of the domain. Inserting ths into
Putting this back together gives the weak form of the wave equation
A function u that satisfies this weak form for any choice of the test function φ at all times t is called a weak solution. Under certain mathematical conditions, u also satisfies the strong form above. We spare the details here, and just assume that both solutions are the same.
We use cookies to analyze our traffic, but won't track you until explicit consent is given. Using our contact form will create relevant cookies and transmit data to third party services to keep track of your request. Read more about how we use personal information in our Privacy Policy.