Mapping
class in SalvusOpt. This gives a lot of flexibility, for instance, to use different discretizations (e.g., a coarser mesh for the inversion or an event-dependent mesh for the simulation) or model parameterizations (e.g., inverting only for a subset of the physical parameters).%matplotlib inline
%config Completer.use_jedi = False
import os
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
import matplotlib.pyplot as plt
import numpy as np
import pathlib
import time
import xarray as xr
import salvus.namespace as sn
nx, ny = 10, 10
x = np.linspace(0.0, 3000.0, nx)
y = np.linspace(-1000.0, 0.0, nx)
xx, yy = np.meshgrid(x, y, indexing="ij")
vp = 1500.0 - yy
rho = 1000.0 - yy
ds = xr.Dataset(
data_vars={
"vp": (["x", "y"], vp),
"rho": (["x", "y"], rho),
},
coords={"x": x, "y": y},
)
ds.vp.T.plot()
<matplotlib.collections.QuadMesh at 0x71fc72778190>
p = sn.Project.from_volume_model(
path="project",
volume_model=sn.model.volume.cartesian.GenericModel(name="model", data=ds),
load_if_exists=True,
)
src = sn.simple_config.source.cartesian.ScalarPoint2D(x=500.0, y=-500.0, f=1.0)
rec = sn.simple_config.receiver.cartesian.collections.ArrayPoint2D(
x=np.linspace(100.0, 2900.0, 10), y=0.0, fields=["phi"]
)
p += sn.Event(event_name="event", sources=src, receivers=rec)
p.viz.nb.domain()
ec = sn.EventConfiguration(
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=2.0
),
wavelet=sn.simple_config.stf.Ricker(center_frequency=5.0),
)
p += sn.SimulationConfiguration(
name="sim_model",
elements_per_wavelength=2,
tensor_order=4,
max_frequency_in_hertz=10.0,
model_configuration=sn.ModelConfiguration(
background_model=None, volume_models="model"
),
event_configuration=ec,
absorbing_boundaries=sn.AbsorbingBoundaryParameters(
reference_velocity=2000.0,
number_of_wavelengths=3.5,
reference_frequency=5.0,
),
)
p += sn.MisfitConfiguration(
name="misfit",
observed_data=None,
misfit_function="L2_energy_no_observed_data",
receiver_field="phi",
)
gradients = {}
while not gradients:
gradients = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=1
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
raw_gradient = sn.UnstructuredMesh.from_h5(gradients["event"])
[2025-02-07 20:39:35,332] INFO: Creating mesh. Hang on. [2025-02-07 20:39:35,468] INFO: Submitting job ... [2025-02-07 20:39:35,672] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:39:39,913] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072039921732_c0021f39c8@local [2025-02-07 20:39:39,992] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:39:42,015] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:39:42,038] INFO: Some simulations are still running. Please check again to see if they are finished. [2025-02-07 20:39:44,066] INFO: 1 events have already been submitted. They will not be submitted again.
raw_gradient
. In the widget below, we notice that the sensitivity at the source location and - to a smaller degree - at the receiver locations has significantly higher amplitudes than everywhere else in the domain. This is the result of all energy passing through these points, which is why the waveforms are clearly most sensitive to changes at those locations. However, this clearly does not look like a reasonable model update.raw_gradient
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc70fe6610>
VP
, but could do the same for RHO
.def visualize_gradient(grad, clip=None):
g = grad.model.copy()
mask = np.logical_and(
g.get_element_centroid()[:, 1] > -1000.0,
np.abs(g.get_element_centroid()[:, 0] - 1500.0) < 1500.0,
)
g = g.apply_element_mask(mask)
if clip:
scale = (
clip
* np.max(np.abs(g.elemental_fields["VP"]))
* np.ones_like(g.elemental_fields["VP"])
)
g.elemental_fields["VP"] = np.minimum(g.elemental_fields["VP"], scale)
g.elemental_fields["VP"] = np.maximum(g.elemental_fields["VP"], -scale)
display(g)
prior = p.simulations.get_mesh("sim_model")
absolute
scaling of the physical parameters, there is no difference between both discretizations. Hence the mapped gradient is the same as the raw gradient.map1 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
)
grad1 = map1.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
)
visualize_gradient(grad1, clip=None)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc70fe5150>
VP
in locations different from the source / receivers.visualize_gradient(grad1, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc90c5bcd0>
map2 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
)
grad2 = map2.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad2, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc90dd10d0>
map3 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
receiver_cutout_radius_in_meters=100.0,
)
grad3 = map3.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad3, clip=0.1)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc90968bd0>
visualize_gradient(grad3, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc713d7410>
mesh = p.simulations.get_mesh(simulation_configuration="sim_model")
roi = np.zeros_like(mesh.connectivity)
mask = mesh.points[mesh.connectivity][:, :, 1] < -100.0
roi[mask] = 1.0
mesh.attach_field("region_of_interest", roi)
map4 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad4 = map4.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad4, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc713fb250>
map5 = sn.Mapping(
inversion_parameters=["VP"],
scaling="relative_deviation_from_prior",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad5 = map5.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad5, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc90b94650>
from salvus.opt.models import UnstructuredModel
smoothed_gradient = UnstructuredModel(
name="smoothed_gradient",
model=p.actions.inversion.smooth_model(
model=grad5.model,
smoothing_configuration=sn.ConstantSmoothing(
smoothing_lengths_in_meters={"VP": [100.0, 50.0]}
),
site_name="local",
ranks_per_job=1,
),
fields=["VP"],
)
visualize_gradient(smoothed_gradient, clip=0.8)
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc90b55cd0>
forward_wavefield_sampling_interval
in WavefieldCompression
is thus an important tuning parameter. Depending on the application and meshing strategy a factor between 5 and 100 is typically achieved.gradients = {}
for i in [1, 5, 10, 20]:
gradient_files = {}
while not gradient_files:
gradient_files = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=i
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
gradients[i] = sn.UnstructuredMesh.from_h5(gradient_files["event"])
[2025-02-07 20:39:52,790] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-02-07 20:39:52,818] INFO: Submitting job ... [2025-02-07 20:39:52,892] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:39:57,082] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072039084677_ad5109e071@local [2025-02-07 20:39:57,141] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:39:59,168] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:40:01,316] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-02-07 20:40:01,347] INFO: Submitting job ... [2025-02-07 20:40:01,425] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:40:07,668] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072040671841_53cde18c6b@local [2025-02-07 20:40:07,731] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:40:09,759] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:40:09,803] INFO: Some simulations are still running. Please check again to see if they are finished. [2025-02-07 20:40:11,836] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:40:11,863] INFO: Some simulations are still running. Please check again to see if they are finished. [2025-02-07 20:40:13,893] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:40:13,936] INFO: Some simulations are still running. Please check again to see if they are finished. [2025-02-07 20:40:15,955] INFO: 1 events have already been submitted. They will not be submitted again. [2025-02-07 20:40:18,104] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-02-07 20:40:18,134] INFO: Submitting job ... [2025-02-07 20:40:18,204] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:40:20,330] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072040333089_2ef4d7d43c@local [2025-02-07 20:40:20,388] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-02-07 20:40:22,410] INFO: 1 events have already been submitted. They will not be submitted again.
for i in [1, 5, 10, 20]:
grad = map5.adjoint(
mesh=gradients[i].copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
print(f"----------------------------------------------------------")
print(f"Mapped gradient with sampling interval {i}:")
visualize_gradient(grad, clip=0.8)
---------------------------------------------------------- Mapped gradient with sampling interval 1:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc70d27010>
---------------------------------------------------------- Mapped gradient with sampling interval 5:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc70e2ec50>
---------------------------------------------------------- Mapped gradient with sampling interval 10:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc70d62610>
---------------------------------------------------------- Mapped gradient with sampling interval 20:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x71fc7094a650>