import os
import numpy as np
import xarray as xr
import salvus.namespace as sn
from salvus.mesh.tools.transforms import interpolate_mesh_to_mesh
# Run simulations on this site.
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
# Gaussian
x, y = np.linspace(0.0, 1.0, 100), np.linspace(0.0, 1.0, 100)
xx, yy = np.meshgrid(x, y, indexing="xy")
g = np.exp(-(((xx - 0.5) ** 2 + (yy - 0.5) ** 2) / (2 * 0.2**2)))
# Pars
vp = 2 * g + 1
rho = vp / 2
# Xarray dataset
ds = xr.Dataset(
coords={"x": x, "y": y},
data_vars={"vp": (["x", "y"], vp), "rho": (["x", "y"], rho)},
)
# Salvus wrapper.
m = sn.model.volume.cartesian.GenericModel(name="blob", data=ds)
# Plot
m.ds.vp.plot()
<matplotlib.collections.QuadMesh at 0x7b84ab92fd90>
p = sn.Project.from_volume_model("proj_2d", m, True)
s = sn.simple_config.source.cartesian.ScalarPoint2D(x=0.25, y=0.25, f=1.0)
r = sn.simple_config.receiver.cartesian.Point2D(
x=0.75, y=0.75, fields=["phi"], station_code="XX", network_code="XX"
)
p.add_to_project(sn.EventCollection.from_sources(sources=s, receivers=r))
f_max = 10.0
# Common event configuration.
ec = sn.EventConfiguration(
wavelet=sn.simple_config.stf.Ricker(center_frequency=f_max / 2),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=1.0
),
)
# Heterogeneous - meshed at f_max.
s0 = sn.SimulationConfiguration(
name="blob_fmax",
max_frequency_in_hertz=f_max,
event_configuration=ec,
model_configuration=sn.ModelConfiguration(
background_model=None, volume_models="blob"
),
elements_per_wavelength=2.0,
)
# Homogeneous - meshed at 1.5 * f_max.
s1 = sn.SimulationConfiguration(
name="homo_fmax_1.5",
max_frequency_in_hertz=1.5 * f_max,
event_configuration=ec,
model_configuration=sn.ModelConfiguration(
background_model=sn.model.background.homogeneous.IsotropicAcoustic(
rho=rho.min(), vp=vp.min()
),
),
elements_per_wavelength=2.0,
)
for s in [s0, s1]:
p.add_to_project(s, overwrite=True)
# Interpolate.
m2m = interpolate_mesh_to_mesh(
p.simulations.get_mesh("blob_fmax"),
p.simulations.get_mesh("homo_fmax_1.5"),
use_layers=False,
use_1d_vertical_coordinate=False,
)
# Visualize.
m2m
[2025-02-07 20:14:45,314] INFO: Creating mesh. Hang on. [2025-02-07 20:14:45,402] INFO: Creating mesh. Hang on.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b84adbb2c10>
if "blob_fmax_1.5" not in p.simulations.list():
p.add_to_project(
sn.UnstructuredMeshSimulationConfiguration(
name="blob_fmax_1.5", unstructured_mesh=m2m, event_configuration=ec
)
)
for name in ["blob_fmax", "blob_fmax_1.5", "homo_fmax_1.5"]:
p.simulations.launch(
simulation_configuration=name,
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=1,
)
p.simulations.query(block=True)
[2025-02-07 20:14:45,882] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072014087509_667ebe06fc@local
[2025-02-07 20:14:49,330] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072014336937_eee6d8eba6@local
[2025-02-07 20:14:54,087] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072014093108_d3bdc784b8@local
blob_fmax
runs are essentially identical, while the homogeneous run is very different. The small differences in the two blob runs are expected due to the different mesh resolutions and the broadband nature of the source wavelet.p.viz.waveforms(
event="event_0000",
receiver_name="XX.XX",
data=["blob_fmax", "blob_fmax_1.5", "homo_fmax_1.5"],
receiver_field="phi",
)
[]
# Spherical coordinates
lat = np.linspace(-5.0, 5.0, 101)
lon = np.linspace(-5.0, 5.0, 101)
dep = np.linspace(0.0, 660e3, 101)
# Gaussian
xx, yy, zz = np.meshgrid(lat, lon, dep, indexing="xy")
g = np.zeros_like(xx)
for lats in lat[25:-25:25]:
for lons in lon[::25]:
g += np.exp(-(((xx - lats) ** 2 + (yy - lons) ** 2) / (2 * 0.5**2)))
# Xarray dataset
ds = xr.Dataset(
coords={"latitude": lat, "longitude": lon, "depth": dep},
data_vars={
"vp": (["latitude", "longitude", "depth"], g * 20, {"units": "%"}),
},
attrs={
"geospatial_lon_units": "degrees",
"geospatial_lat_units": "degrees_north",
"geospatial_vertical_units": "m",
},
)
ds_mantle = ds.copy()
ds_mantle["vp"] *= -1
# Salvus wrapper.
mc = sn.model.volume.seismology.CrustalModel(name="crust", data=ds)
mm = sn.model.volume.seismology.MantleModel(name="mantle", data=ds)
# Plot depth slice.
mm.ds.vp.isel(depth=0).plot()
<matplotlib.collections.QuadMesh at 0x7b84a979a0d0>
d = sn.domain.dim3.SphericalChunkDomain(
lat_center=0.0,
lon_center=0.0,
lat_extent=5.0,
lon_extent=5.0,
radius_in_meter=6371e3,
)
# Add mantle and crustal model.
p = sn.Project.from_domain("proj_3d", d, True)
for m in [mc, mm]:
p.add_to_project(m, overwrite=True)
s = sn.simple_config.source.seismology.SideSetVectorPoint3D(
fr=1e10,
ft=0.0,
fp=0.0,
latitude=-2.5,
longitude=-2.5,
depth_in_m=0.0,
side_set_name="r1",
)
r = sn.simple_config.receiver.seismology.SideSetPoint3D(
latitude=2.5,
longitude=2.5,
fields=["velocity"],
station_code="XX",
network_code="XX",
side_set_name="r1",
)
p.add_to_project(sn.EventCollection.from_sources(sources=s, receivers=r))
p_min = 50.0
# Common event configuration.
ec = sn.EventConfiguration(
wavelet=sn.simple_config.stf.Ricker(center_frequency=1 / (2 * p_min)),
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=600.0
),
)
# Heterogeneous - meshed at f_max.
s0 = sn.SimulationConfiguration(
name="blobs",
tensor_order=2,
max_depth_in_meters=660e3,
min_period_in_seconds=p_min,
event_configuration=ec,
model_configuration=sn.ModelConfiguration(
background_model=sn.model.background.one_dimensional.BuiltIn(
name="prem_iso_one_crust"
),
volume_models=["mantle", "crust"],
),
elements_per_wavelength=2.0,
)
# 1D only - meshed at a slightly lower resolution.
s1 = sn.SimulationConfiguration(
name="1d",
tensor_order=2,
max_depth_in_meters=660e3,
min_period_in_seconds=p_min,
event_configuration=ec,
model_configuration=sn.ModelConfiguration(
background_model=sn.model.background.one_dimensional.BuiltIn(
name="prem_iso_one_crust"
),
),
elements_per_wavelength=1.5,
)
for s in [s0, s1]:
p.add_to_project(s, overwrite=True)
p.viz.nb.simulation_setup("blobs")
[2025-02-07 20:14:59,141] INFO: Creating mesh. Hang on.
Interpolating model: mantle.
Interpolating model: crust.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b84a9025390>
use_layers
and use_1d_vertical_coordinate
to True
. This ensures that the interpolation only happens between layers are consistent with each other (i.e. discontinuities are preserved) and that any topography and bathymetry will be flattened before the interpolation occurs.# Interpolate.
m2m = interpolate_mesh_to_mesh(
p.simulations.get_mesh("blobs"),
p.simulations.get_mesh("1d"),
use_layers=True,
use_1d_vertical_coordinate=True,
)
# Assert mesh is different.
assert m2m.nelem != p.simulations.get_mesh("blobs").nelem
# Visualize.
m2m
[2025-02-07 20:15:02,083] INFO: Creating mesh. Hang on.
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7b84a96e6110>
p.add_to_project(
sn.UnstructuredMeshSimulationConfiguration(
name="blobs_reinterp", unstructured_mesh=m2m, event_configuration=ec
)
)
for name in ["blobs", "blobs_reinterp", "1d"]:
p.simulations.launch(
simulation_configuration=name,
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=1,
)
p.simulations.query(block=True)
[2025-02-07 20:15:04,454] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072015458636_36c218d60c@local
[2025-02-07 20:15:36,349] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072015357760_4f18eff1f3@local
[2025-02-07 20:15:54,584] INFO: Submitting job ... Uploading 1 files... 🚀 Submitted job_2502072015589724_c9ed5611e9@local
p.viz.waveforms(
event="event_0000",
receiver_name="XX.XX",
data=["blobs", "blobs_reinterp", "1d"],
receiver_field="velocity",
)
[]