%matplotlib inline
# This notebook will use this variable to determine which
# remote site to run on.
import os
import time
import salvus.namespace as sn
SALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")
p = sn.Project(path="project")
p += sn.MisfitConfiguration(
name="L2",
observed_data="true_model_100kHz",
misfit_function="L2",
receiver_field="phi",
)
print(
p.actions.inversion.compute_misfits(
simulation_configuration="initial_model",
misfit_configuration="L2",
events=p.events.list(),
store_checkpoints=False,
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
)
{'event_0000': 0.02349703234503255, 'event_0001': 0.019519720702624015, 'event_0002': 0.016728037879959842, 'event_0003': 0.012159437623776588, 'event_0004': 0.016546152237477872}
while not p.actions.inversion.compute_gradients(
simulation_configuration="initial_model",
misfit_configuration="L2",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=10
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
):
time.sleep(10.0)
[2024-07-02 14:14:10,491] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event_0000', 'event_0001', 'event_0002', 'event_0003', 'event_0004'] [2024-07-02 14:14:10,582] INFO: Submitting job array with 5 jobs ... [2024-07-02 14:14:11,001] INFO: Launched simulations for 5 events. Please check again to see if they are finished. [2024-07-02 14:14:21,984] INFO: Submitting job array with 5 jobs ...
Uploading 1 files... Uploading 1 files... Uploading 1 files... Uploading 1 files... Uploading 1 files... [2024-07-02 14:14:22,097] INFO: Launched adjoint simulations for 5 events. Please check again to see if they are finished. [2024-07-02 14:14:32,461] INFO: 5 events have already been submitted. They will not be submitted again.
p.viz.nb.gradients(
simulation_configuration="initial_model",
misfit_configuration="L2",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=10
),
events=p.events.list(),
)
gradient = p.actions.inversion.sum_gradients(
simulation_configuration="initial_model",
misfit_configuration="L2",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=10
),
events=p.events.list(),
)
gradient