This documentation is not for the latest stable Salvus version.
The 1D model file format is adopted from AxiSEM and also used as a standard within the NASA Insight mission. It is based on KEY VALUE
pairs as follows:
The key value format can accomodate 3 different types of values: single values, list of values and tables, all separated by white space. Keys are case sensitive and must not have leading white space. Comments are indicated byt the # character. Continuation lines of tables are indented by at least one blank.
# single value
KEY VALUE
# list of values
KEY VALUE1 VALUE2 VALUE3
# table
KEY HEADER1 HEADER2
VALUE11 VALUE21
VALUE12 VALUE22
For Salvus, the following keys can be used:
NAME
Name of the model. type: string, default: filename without ending.
DESCRIPTION
Reference or verbal description of the model.
ANISOTROPIC
Whether the model is anisotropic. type: boolean, default: false
.
ANELASTIC
Whether the model includes an attenuation model. type: boolean, default: false
.
REFERENCE_FREQUENCY
Frequency at which the seismic velocities are defined in Hz. type: float, default:
1.0
.
UNITS
Units used for density, seismic velocities and depth/radius, either m
for SI units (m, m/s, kg/m 3 )
or km
for (km, km/s, g/cm 3 ). type: string, default: m
.
COLUMNS
Table containing the depth dependent model parameters. type: float.
Discontinuities in the model (both first and second order) are detected based on repeated radius/depth values. In between these discontinuities, paramteres are assumed to be smooth and interpolated using splines (cubic by default). The table columns in the table COLUMNS
have no particular order, the rows can be sorted either from top to bottom or vice versa. The table needs to contain at least these colums:
radius
or depth
rho
vp
and vs
if ANISOTROPIC is false.
vpv
, vph
, vsv
, vsh
and eta
if ANISOTROPIC
is true
.
QMU
and QKAPPA
if ANELASTIC
is true
A three layer 1D model where the seismic velocities have gradients in the upper 2 layers and constant below.
NAME true_model
UNITS m
COLUMNS depth rho vp vs
0.0 2384.4 3500.0 2020.0
2000.0 2441.9 3850.0 2223.0
2000.0 2570.1 4725.0 2728.0
7000.0 2780.8 6475.0 3738.0
7000.0 2835.5 7000.0 4041.0
10000.0 2835.5 7000.0 4041.0
some lines removed as indicated by [...]
:
# Input file for Salvus
NAME prem_ani
ANELASTIC T
ANISOTROPIC T
UNITS m
COLUMNS radius rho vpv vsv qka qmu vph vsh eta
6371000. 2600.00 5800.00 3200.00 57827.0 600.0 5800.00 3200.00 1.00000
6356000. 2600.00 5800.00 3200.00 57827.0 600.0 5800.00 3200.00 1.00000
# Discontinuity 1, depth: 15.00 km < this just a comment and ignored by the software
6356000. 2900.00 6800.00 3900.00 57827.0 600.0 6800.00 3900.00 1.00000
6346600. 2900.00 6800.00 3900.00 57827.0 600.0 6800.00 3900.00 1.00000
# Discontinuity 2, depth: 24.40 km
6346600. 3380.75 8190.32 4396.02 57827.0 600.0 8190.32 4611.80 0.90039
6335480. 3379.54 8182.26 4398.58 57827.0 600.0 8182.26 4601.82 0.90471
[...]
5771000. 3975.82 10157.83 5515.93 57827.0 143.0 10157.83 5515.93 1.00000
# Discontinuity 6, depth: 600.00 km > second order discontinuity
5771000. 3975.82 10157.76 5516.02 57827.0 143.0 10157.76 5516.02 1.00000
[...
3480000. 5566.46 13716.62 7264.65 57827.0 312.0 13716.62 7264.65 1.00000
# Discontinuity 10, depth: 2891.00 km > fluid by vs=0
3480000. 9903.44 8064.79 0.00 57827.0 0.0 8064.79 0.00 1.00000
[...]
1221500. 12166.33 10355.72 0.00 57827.0 0.0 10355.72 0.00 1.00000
# Discontinuity 11, depth: 5149.50 km
1221500. 12763.61 11028.26 3504.31 1327.7 84.6 11028.26 3504.31 1.00000
[...]
0. 13088.50 11262.20 3667.80 1327.7 84.6 11262.20 3667.80 1.00000
Salvus includes a number of popular 1D models that can directly be used for meshing.
from salvus.mesh.models_1D import model
for mname in sorted(model.get_builtin_models()):
mod = model.built_in(mname)
print("\033[1m" + mod.name + "\033[0m")
print(mod.description + "\n")
Moon Weber Weber, Renee C., Pei Ying Lin, Edward J. Garnero, Quentin Williams, and Philippe Lognonné. 2011. “Seismic Detection of the Lunar Core.” Science 331 (6015): 309–12. doi:10.1126/science.1199375. VPREMOON Velocity model for the moon according to Garcia, Raphaël F., Jeannine Gagnepain-Beyneix, Sébastien Chevrot, and Philippe Lognonné. 2011. “Very Preliminary Reference Moon Model.” Physics of the Earth and Planetary Interiors 188 (1-2) (September): 96–113. doi:10.1016/j.pepi.2011.06.015. VPREMOON_noLVL Velocity model for the moon according to Garcia, Raphaël F., Jeannine Gagnepain-Beyneix, Sébastien Chevrot, and Philippe Lognonné. 2011. “Very Preliminary Reference Moon Model.” Physics of the Earth and Planetary Interiors 188 (1-2) (September): 96–113. doi:10.1016/j.pepi.2011.06.015. Shallow low velocity layer removed. ak135 Kennett, Brian L.N., E Robert Engdahl, and Ray Buland. 1995. “Constraints on Seismic Velocities in the Earth from Traveltimes.” Geophysical Journal International 122: 108–24. Q from PREM. ak135f Montagner, Jean Paul, and Brian L.N. Kennett. 1996. “How to Reconcile Body-Wave and Normal-Mode Reference Earth Models.” Geophysical Journal International 125: 229–48. doi:10.1111/j.1365-246X.1996.tb06548.x. csem Fichtner, Andreas, Dirk-Philip van Herwaarden, Michael Afanasiev, Saule Simute, Lion Krischer, Yesim Cubuk-Sabuncu, Tuncay Taymaz, Lorenzo Colli, Erdinc Saygin, Antonio Villasenor, Jeannot Trampert, Paul Cupillard, Hans-Peter Bunge, and Heiner Igel. 2018. "The Collaborative Seismic Earth Model: Generation 1." Geophysical Research Letters 45(9): 4007-4016. iasp91 Kennett, Brian L.N., and E Robert Engdahl. 1991. “Traveltimes for Global Earthquake Location and Phase Identification.” Geophysical Journal International 105 (2): 429–65. doi:10.1111/j.1365-246X.1991.tb06724.x. Density and Q from PREM. mars_sohl Sohl, Frank, and Tilman Spohn. 1997. “The Interior Structure of Mars: Implications from SNC Meteorites.” Journal of Geophysical Research: Planets 102 (E1): 1613–35. doi:10.1029/96JE03419. Model A. prem_ani Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. No ocean layer. prem_ani_no_crust Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Crust replaced by upper mantle material. prem_ani_ocean Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. prem_ani_one_crust Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Upper crustal layer replaced by lower crustal material. prem_crust20_cont Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Crust replaced by crust 2.0 continental average model. prem_crust20_global Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Crust replaced by crust 2.0 global average model. prem_crust20_ocean Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Crust replaced by crust 2.0 oceanic average model. prem_iso Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. No ocean layer. prem_iso_no_crust Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Crust replaced by upper mantle material. prem_iso_one_crust Dziewonski, A.M., and Don L. Anderson. 1981. “Preliminary Reference Earth Model.” Physics of the Earth and Planetary Interiors 25 (4): 297–356. doi:10.1016/0031-9201(81)90046-7. Upper crustal layer replaced by lower crustal material.
Salvus' 1D model class includes funcionality to plot 1D models in a number of different ways.
# plot all model parameters
mod = model.built_in("prem_ani")
mod.plot()
# plot vp vs only
mod = model.built_in("prem_iso")
mod.plot_vp_vs_profile()
# compare 2 models
mod1 = model.built_in("prem_iso")
mod2 = model.built_in("ak135f")
figure = mod1.plot_vp_vs_profile(show=False)
figure = mod2.plot_vp_vs_profile(
show=True, figure=figure, linestylemap={"VP": "--", "VS": "--"}
)
Salvus' model class can also compute quantities that derive from the 1D parameters, in particular ellipticity as a function of depth by solving Clairaut's equation and the gravity potential and force by solving Poisson's equation:
mod = model.built_in("prem_ani")
mod.plot_ellipticity()
mod.plot_gravity()